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SECTION 1: THE MATHEMATICAL SYMBOLS USED IN THE STUDY OF RATES

1-1 Rates of Change

The world is constantly changing. Few things are as certain as change. The
historical increase in the rate of cultural change in the world has been related
to the evolution of technology. The number of years between major technological
innovations has decreased. New products and ideas become obsolete more quickly
than before. It seems clear that technology is capable of a faster rate of change
than human institutions can change to accommodate them. School is a human institu-
tion, therefore it is inevitable that it is behind the times a little. You no
doubt realize that some of what you learn in school will not be relevant to the

world you will live in as an independent adult.

This doesn't imply that going to school is a waste of time. There is no way
to tell for sure which things will be useful and which things won't. The more you
learn, the more useful knowledge you will pick up. The more useless knowledge also.
More important - you can learn how to learn - the definitely human adaptive mecha-
nism.

Anyway, from an applied mathematical point of view, few topics are more justi-
fiable than rates of change. Good mathematical descriptions of rates will allow us
to project today's trends into the future; For example, we can project world popu-
lation growth and ponder the implications. We will be able to calculate what will
happen to the buying power of money at given rates of inflation. From a biomed.ical
point of view, good health habits can be thought of as slowing down the rate of
aging of the body. In automobile accidents the rate of change of the body's momen-
tum is a major factor in whether an injury will occur. In lung function testing
the maximum rate that air may be forced from the lungs is more important than the

maximum amount of air that may be expired. The list could go on and on.

1-2 Identification of the Changing variables

In this topic, just as in otherimathematical topics, there is a certain amount

of basic groundwork to be laid. We are talking about becoming familiar with some
mathematical symbols and language.

To illustrate what we mean, consider the case of an automobile cruising down
a straight highway at a constant speed. Many things are changing. Can you iden-
tify some of them? For one, time is certainly not standing still. Time is relent-
lessly moving forward. Time will generally be a factor in the study of rates of
change. Mathematicians and scientists have agreed to use the symbol "At" {pro-
nounced, "delta tee") to represent time intervals. In addition to time, many other
things are changing, for instance the positibn of the car, the total number of re-

volutions made by the engine, the orientation of the wheels, and so forth.

This is typically the case. That is, for a given situation many things are

changing at once. However, to make our analysis simpler we will always select just

one changing quantity at a time.



Now we'll go back to our car example. Let's focus our attention on the change
in position of the automobile. The charge in the position of the car may be meas-
ured in units of length. Change in position with time is called speed. As you al-
ready know, speed may have many different units--for example, miles per hour, meters
per second or perhaps even furlongs per fortnight.' There are many ogher kinds of
rates besides speed--for example, miles per gallon, dollars per kilowatt-hour, dol-
lars per kilogram, blood-alcohol concentration decrease per hour.

For the purposes of our study, we are going to concentrate on time-dependent
rates--things that change with time. Such rates make up the most important cate-
gory of rates of change.

We will need some ground rules. We are going to call time intervals At. In a

time-dependent rate we will always be measuring how fast something is changing with
time. For the present we will call the change in the other quantity Ay (pronounced

"delta y").

PROBLEM SET 1:

1. 1Identify possible Ay's and At's in this list of units.

a. seconds g centuries
b. kilometers h volts

c. hogsheads i. liters

d. weeks 3 hands

e. . degrees Kelvin k. millemia
£. ikilograms

State a measurable quantity besides time that will change for each of the situations
described in Problems 2 through 25. Many have more than one correct answer.

2. A light switch is flipped.

3. A radio is turned down.

4. The accelerator of a car is depressed while the car is on a flat road.
5. The fire under a pot of water is turned off. ’
6. A cracker is chewed.

7. Elmo begins to fast.

8. An infant grows.

9. Lou Kosite dies.

10. Lem Fosite gets excited.
1ll1. Haley Tosis wakes up in the morning.
12. Hot water is boured into a tub of cold water.
13. A machine replaces some employees in a factory.
14. Taxes go up.

15. The o0il is changed in a car. 7
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16. Fat Ann Alysis goes on a diet. 21. An ice age occurs.

17. Kar D. Ack runs a kilometer. 22. More people are X-rayed.

18. Felton Farquar eats dinner. 23. People all over the world use DDT.

19. A mountain range grows. 24. The world burns oil.

20. The continents drift. 25. People are born.

SECTION 2: AVERAGE RATES

2-1 Elmo's Trip

In the previous section we discussed the idea that a rate of change always in-
volved two variables, one of which was generally time, or At. The other quantity
we called Ay. The quotient %% measures rates of change. For example, suppose Elmo

traveled 40 miles in his automobile and that it took him one hour.

Ay 40 miles

At = 1 hour

= rate of change of position

n
[=1]
~}

You should be familiar with the units of this rate. They are miles per hour,
or mph. It is what speed limits are stated in. It is what speedometers in the U.S.
are calibrated in. 1In the rest of the world speedometers are scaled in terms of
kilometers per hour. So are speed limits. We are scheduled to catch up with the

rest of the world in 1978 when we convert to metric measurements.

What is the significance of the 40 %%%%? result of our simple-minded example?
It is the average rate for the trip.( It says nothing about how fast Elmo was going
at any particular instant in the one-hour interval. Suppose the 40 miles repre-
sented a typical commuting trip. Then some time was probably spent stopped at a
stoplight or grocery store. The rate at this time was 0 %%%%?. Probably some time
was spent at a freeway speed of 55 mph. The result of all this stopping and going
was that Elmo covered 40 miles in one hour. Therefore, his average rate for the en-
tire journey was 40 miles per hour. This definitely does not imply that he spent

one hour traveling at an absolutely constant rate of 40 mph.

This is a éood place to sound a cautionary note. Many students get the erro-
neous idea that average rates are calculated 1ike averages. They are not. We did
not get Elmo's average rate by adding (55 + 0) and dividing by 2. It is unfortu-
nate that the word "average" is used to describe two concepts which are not calcu-

lated in the same manner.
You probably expected something funny in this section because Elmo is here.
Let this teach you that nothing is certain. Especially in a unit on change.

3
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2-2 Deltas are Differences

Seldom in a real-life situation is a rate calculation as straightforward as in
the previous section. The distance traveled generally comes from a pair of odometer
readings. The odometer registers the total number of miles on a car. For example,
suppose the odometer read 94,363.8 at the start of the trip and 94,403.8 at the end

of the trip. Wwhat would aAy.be? Ay is the difference between the two readings.

Ay = 94,403.8 --94,363.8

40 miles

1]

dy

Notice that Ay is the difference of two numbers. Remember that this is the
reason we use delta or A. It is easily associated with differences. The words
"delta" and "difference" both start with the letter "d" which is supposed to remind
you that Ay and At are both actually differences. The difference associated with
At in our example is the difference between the starting time and the time when
Elmo stopped. For example, if Elmo started his trip at 6:31 a.m. and finished it
at 7:31 a.m., then At is the difference between these two times, or 1 hour.

2-3 A More Complicated Example

PROBLEM:

Y. Noe lives on skid row. One day, by 1:00 p.M., he had bummed enough money
for a big bottle of burgundy. By 1:30 p.M. he had finished off the bottle. At
2:00 P.M. his blood-alcohol concentration had reached its maximum value of .24 per
cent. By 2:00 A.M. the next morning his blood-alcohol concentration was .08 per
cent. What was the average rate at which Mr. Noe's blood-alcohol concentration

decreased?
SOLUTION:

In this problem Ay is going to be the change in blood-alcohol concentration
stated in terms of per cent alcohol.

AY = .24% - .08%

.16%

dy
At, as usual, is the time interval.

At = 2:00 A.M. - 2:00 pP.M.

At = 12 hr

The average rate of decrease is %%.
Ay _ _.16%
At 12 hr

_ 2
= .0133...5?

PROBLEM SET 2:

1. Dolores Mhoney thought that she was spending too much money, so she started to
keep track of her monthly expenditures. By day's end on December 3 she had spent

4

ERIC

Aruitoxt provided by Eic:

A}
9



Q

ERIC

Aruitoxt provided by Eic:

$38. By day's end on December 15 she had spend $158. What was Dolores' average
rate of expenditure in terms of dollars per day during this period?

2. Doctor Dave told Nurse Naomi to meter the IV (intravenous) solution of 5% dex-
trose into Patient Paul at the rate of .5 liter per hour until it was all gone.
When she hung up the bottle it read .95 liter. When she came back ten minutes la-
ter, it read .85 liter.

a. How fast was the solution entering Patient Paul's body? State the result
in units of liters per hour.

b. Should Nurse Naomi slow down or speed up the rate at which the solution en-

ters Patient Paul's body?

3. Perry Cardium had a serious case of bacterial endocarditis; therefore, Doctor
Denise prescribed a massive dose of penicillin, to be given intravenously over a
period of 24 hours. The drug was dissolved in one liter of solution. This liter
of solution was to be metered into Perry over a 24 hour period. When the bottle
was first hung, it read "1000 ml." One hour later it read "940 ml."

a. What was the rate at which the solution was entering Perry's body? State
the answer in 1nits of ml per day.

b. Should the rate be increased or decreased?

4. Fernly's electric meter read 58,942.3 kilowatt-hours on May 3 and 58,972.7 kw-
hr on May 19. What was Fernly's average rate of electricity usage (in kw-hr per
day) during that period?

5. During the period Jan. 1, 1920, to Jan. 1, 1970, the population of the United
States rose from 105,710,620 to 203,211,926. What was the average rate of popula-
tion increase (in people per year) during that period?

6. On June 1 it took $10.00 to buy a market basket of food. Four months later it
took $10.30 to buy the: same amount of food. What was the rate of inflation for the

original market basket? State your answer in terms of cents per year.

7. Mrs. Klackplug could not convince her husband that he was an outrageous snorer.
Therefore shz decided to stay up one night and record the number of snores. The

period between 1:31 a.m. and 2:06 a.m. was a period of very high snoring incidence.
During this period Mrs. Klackplug's tally rose from 132 snores to 307 snores. What
was Mr. Klackplug's average snoring rate (in snores per minute) during this period?

8. M. Phee Sema performed a pulmonary function test. When Do&ctor Donna analyzed
the laboratory report on this test she observed that the volume of expired air in-
creased from .5 liters to 2.0 liters between t = .5 seconds and t = 1.7 seconds.
What was Ms. Sema's average rate of air expiration in liters per second during this
period?

9. Norman Mall performed a pulmonary function test. When Nurse Norbert examined
the laboratory results, he noted that the volume of expired air increased from 1.1
liter to 2.6 liters from t = .6 seconds to t = .9 seconds. What was Norman's aver-—

age rate of air expiration during this period?

1¢
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SECTION 3:

3-1

possible to analyze his trip in a more detailed manner,
trip as setting up a functional relationship between time and distance.

Rates and Graphs

RATES~--GRAPHS AND SLOPE

Suppose that for some reascr we were still interested in Elmo's trip.
We can view the automobile

It is

All this

means is that if more accurate records of the trip were available, then knowledge of

time would be sufficient to determine Elmo's location (i.e., distance from starting
We can represent this idea by a function machine.

point) at any particular moment.

try to graph them.
tal axis we have elapsed time in both minutes and hours.

have distance traveled in miles.

6
(€)
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location = f (t)

As you know by now, whenever we start talking about functions, we generally
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Below is a graph that represents Elmo's trip.
On the vertical axis we

On the horizon-
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Elapsed Time

is a log of F'mo's activities during each leg of the

Elmo drives from work to the grocery store,

Elmo
Elmo
Elmo
Elmo
Elmo
Elmo

continues on,
drives from the freeway to his home.

picks up a few things at the store.
drives to the freeway.
drives on the freeway.
is stopped for speeding.

somewhat chastened.
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The first thing to notice is that Elmo's average speed for the entire trip is
still 40 mph. He traveled 40 miles in oue hour. For the entire trip Ay = 40 miles
and At = 1 hour. In a similar fashion, we can calculate the average speed for each
leg of the trip. Let's calculate Elmo's average speed just before he was stopped
for speeding. Leg number 4 (between points A and B) occurred between t = 33 min
and t = 15 min. Therefore, At = (33 - 15) or 18 min. In this 18-minute interval
Elmo's distance traveled increased from 5 miles to 26 miles. Therefore Ay = (26 -

5) or 21 miles.

8y _ 21 miles
3t =~ I8 minutes

_ 7 miles
€ minutes

We can convert miles per minute to miles per hour by multiplying by the con-
version factor, 60 =il,
' hr

|
;

= 98 kph
It's clear why Elmo was stopped for speeding.

The following are the average speeds for each of the legs of Elmo's trip.
30 mph (42 kph)

0 mph

30 mph (42 kph)

70 mph (98 kph)

0 mph

%50 mph (70 kph)

30 mph (42 kph)

QOOEOO®O

This is a good place to repeat a point that we made earlier. Average rates
are not found by adding up rates and dividing by the number of added rates. For
example, the sum of the seven rates listed above is 210. This number divided by 7

is 30. Thirty m-h is not the average rate.

3-2 Average Rate and Slope

You have probably recognized by now that average rates are closely related to
our old friend slope. Elmo's average speed for leg 4 of his trip is identical to
the slope of the line between points A and B on the graph. Ay = rise and At = run.

_ rise
run

DL[<>
ct|

slope

Steeper lines mean greater slopes and faster speeds. On the other hand, a horizon-
tal line has a slope of zero which is equivalent to saying that Elmo was traveling

at a speed of 0 mph.

12



PROBLEM SET 3:

Gaylord Sky likes to hike. Below is a graphical record of his hike. Problems 1
through 4 refer to this graph.
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The following is a description of each leg of Gaylord's hike.

Leg # .
1 (A to B) Gaylord starts hiking, full of energy. He gradually slows down
as the slope increases.

2 (B to C) Gaylord hikes up a very steep slope to a pass. Each short peri-
od of walking is followed by a short rest. -

3 (C to D) Gaylord stops to eat lunch.
4 (D to E) Gaylord rapidly descends the other side of the pass.

5 (E to F) Gaylord walks slowly along the floor of a valley to a lakeside
campsite.

PROBLEMS:
1. Calculate the average rate in E% for each leg of the hike. (5 answers)
2. Calculate the average rate for the entire trip.
3. Which leg has the greatest slope?
8 N ;lé?
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4. Which leg has the smallest slope? Y b

5. 1In general, suppose leg Y has a

greater slope than leg Z; therefore 5
the average rate for leg Y is (great- 4
er, less) than leg 2.

6. Identify the leg with the great-
est average rate. 2

7. 1Identify legs with an average.raée
of zero. o

SECTION 4: THE RELATIONSHIP BETWEEN ‘A DESCRIPTIVE
LINEAR EQUATION AND RATE OF CHANGE

4-1 Elmo Goes to a Party

In the previous section Elmo drove home from work. We represented distance

traveled as a function of time. We found the average rate of change of distance or,

in other words, the average speed by computing %%. Ay and At are shown in the dia-

gram below.

AAVERAGE RATE = ‘_2%’

t

We found that the average rate between points A and B was identical to the
slope of the line between points A and B. All of this is very important to master.
erefore, this section will deal mainly with reinforcing these ideas in relation
to new examples. The graph on the following page shows Elmo's energy consumption
during the course of a party. We constructed the graph by referring to the table
on page 84 of Unit II Biomedical Science Laboratory Manual and assuming that Elmo

has a mass of 60 kg (about 132 1b).

Elmo drove to the party, walked to the house and then stood around. After a
while a charitable female coaxed him to dance. Then somebody bet him ten dollars
that he wouldn't run around the block. Elmo took him up on the bet. when he re-
turned, the guy was gone. Whereupon, Elmo decided to do something more sedate. He
played around with some Day Glo paints that were available and then took a nap on

the couch.
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. We can easily calculate the average energy expenditure for the entire evening.
From the time Elmo set out for the party until the end of his nap, 2 hours passed.
During that period 395 Calories were expended. Therefore Ay = 395 Cal and At = 2
hours.

Average rate of _ 395 Cal

energy expenditure = ~ 2 "hr

Cal
197.5 i

4-2 Dancing and Running

Similarly, we can calculate the average rate of energy expenditure for any sub-
interval we choose. Let's calculate the average rate while Elmo was dancing and
running. From the graph we see that Elmo started dancing at t = 1.0 hour. . He fin-
ished running at t = 1.55 hour. Therefore, At = .55 hour. During this time inter-
val Elmo's energy expenditure increased from 110 to 330 Cal. Therefore, Ay = 330 -
110 or 220 Cal.

Ay _ 220 Cal

At .55 hr
_ Cal
= 400 R

o 15
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4-3 Explicit Equations Relating y and t

The following seven equaticns describe Elmo's seven different activities at

the party.
ACTIVITY EQUATION DOMAIN
l. Driving y = 100t 0 <tzx< .4
2. Walking Yy = 200t - 40 .4 <t < .5
3. Standing y = 100t + 1lv 5 <t <1
4. Dancing ¥ = 300t - 190 l <t=<1.3
5. Running y = 520t - 476 1.3 < t < 1.55
6. Painting y * 171t - 64 1.55 < t < 1.9
7. Napping y = 50t + 295 1.9 <t < 2.0

Notice that each of the equations is in the form y = mt + b. The slope, or m,
is the average rate over the given domain. For example, one equation which de-

scribes Elmo's energy expenditure is
y = 100t

For this equation m = 100; therefore the average rate of energy expenditure was 100

Cal per hr.

PROBLEM:

What was the average rate of energy expenditure while Elmo was running around

the block?
SOLUTION:
The equation which describes this portion of the graph is
y = 520t - 476
The slope of this equation is 520; therefore the average rate was 520 Cal per hr.

Below we have listed the average rate for each of Elmo's activities. Notice

that the average rate is simply m in the corresponding equation.

AVERAGE RATE

ACTIVITY (Cal/hr)
l. Driving 100
2. Walking 200
3. Standing 100
4. Dancing 300
5. Running 520
6. Painting 171
7. Mapping 50

PROBLEM SET 4:

When Elmo was a high school student he walked to school. Below we have a record of
a particularly disastrous stroll for our hero. On the vertical axis of the graph
on the next page, we have recorded Elmo's total number of heartbeats. On the hori-
zontal axis we have the elapsed time in hours. We can use the information on the

graph to calculate Elmo's average pulse rate during various events. 11
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TIME IN MINUTES

The Story

Elmo was in love with Bonita Bash. Bonita's house was on his way to school.
Elmo had been screwing up his courage to ask her for a date. He timed his departure
so that he would meet Bonita coming out of her house on her way to scinool. When he
got close to Bonita Bash's house his heart began to pound. Would she come out as
planned? She did! His timing was almost perfect. He greeted her and made ne:ivons

small talk while working himself up to the main question.
"Uh,...m can you go to the football game with me on Friday?" he asked.
"No, I already have a date," she said.

"Well, how about a movie Saturday?" he asked. No, she felt a cold coming on
and would Snpbably not be feeling very well on Saturday. Elmc still hadn't quite

gotten the message.

"0.K., then, how about going bike riding on Sunday afternoon?" No, she con-
sidered Sunday to be a day of rest. She preferred to spend it quietly at home with
her family.

12 e
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Elmo shut up. He might not know much about Zfemales, but he did know a little
about baseball. In baseball, three strikes means that you're out. They walked
quietly together for a short distance. They turned a corner and there was Bull
Heavy. It was widely known that Bull was trying to date Bonita. Bull was unhappy
to see Elmo with Bonita. Elmo was unhappy to see Bull. Bull and Elmo had a little
discussion. It turned out that Bull thought that Elmo and he should Settle their
differences in a physical way. Elmo didn't see things that way. Bull took a swing
at Elmo, and Elmo .responded as bravely as he could. He ran toward school. Unfortu-

nately, he tripped and fell, knocking himself out cold in the process.
1. what was Elmo's average pulse rate for the entire episode (in beats per minute)?

2. What happened to Elmo's pulse rate after he struck out with Bonita? Justify

your answer by referring to the graph. No calculation is necessary.
3. What happened to Elmo's pulse rate when he turned and ran away from Bull Heavy?

4. When was Elmo's pulse rate the slowest?

5. What was the average pulse rate during the period from when he first saw Bonita

until he struck out? (B to D on the graph)
6. What was Elmo's average pulse rate while he was running? (G to H)

7. The eight equations below describe different portions of Elmo's wali. Order

the equations from slowest heartbeat to fastest.

y = 75t

y = 167t - 367
y = 140t - 180
y = B3t + 500

y = 175t - 875
y = 120t + 60

y = 150t - 500
y = 50t + 2000

8. The equation y = 75t describes the initial portion of the graph when Elmo was
walking. What are the domain and range of validity? 1In other words, for what

values of y and t does the equation describe t!:# graph?

9. On the following page we have Mrs. Klacipliug's graph of the number of snores
her husband emitted as a function of time.

a. How many minutes passed before Mr. Klackplug snored his first snore?

b. Write three linear equations that describe the graph.

c. State the domain of validity for each equation.

18 ' 13
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SECTION 5: INSTANTANEOUS RATES OF CHANGE

5-1 Elmo Falls Out of an Airplane

After Elmo's humiliating experience with Bull Heavy, he decided that he needed
to do something brave to give his self-image a tune-up. After thinking about it
for a couple of weeks, he decided that sport parachuting was the thing for him. So
one weekend he went to Flay Kee's Sky Diving School and laid down $40 that he had
saved from his paper route for instruction and his first jump. He spent the better
part of a day learning the basics of parachuting. By late afternoon his instructor
had declared that he was "ready to go." Elmo was a little nervous. He did not ap-

preciate the instructor's choice of words.

Typically a student's first jump is on a "static line." That is, the rip cord
of his main parachute is attached to a long cord which is attached to the airplane.
Consequently, the rid cord is pulled automatically when the parachutist leaves the
airplane. Elmo was a little hesitant in boarding the aircraft; therefore, he was
the last one in. He didn't realize that this would mean that he would have to be

the first one out.

As the aircraft took off and approached drop altitude, Elmo became more and
more terrified. He began to think of ways 'to chicken out. Trut in vain. There was
no honorable way out. No dishonorable way either. There was no way that the others
could jump if he didn't go out the door first. At some point he resigned himself
to his fate. He was sure that he was going to die. He felt sick. He had finally

convinced himself that he was stupid, crazy, imbecilic, etc.

He felt a tap on his shoulder that meant that he should go cut the door, hang
onto the wing strut, and put exactly one foot on the wheel.

N 19
ERIC

Aruitoxt provided by Eic:



Q

ERIC

Aruitoxt provided by Eic:

In a dazed state, Elmo did what he had been trained to do while on the ground.
When he was in position, he had a moment for reflection. He noticed that the wheel,
where his foot was, was free to rotate. This struck Elmo as being very unstable.
Why, a person could fall, thought Elmo. Then it occurred to him that this was the
reason he was 2000 feet (about 600 m) above the earth, hanging onto a wing strut.

Somehow this thought had a calming effect.

WY

=

He felt a tap on his left hand. Elmo looked up from the ground and over to the
jumpmaster. He was violently stabbing his thumb at the ground. "That could mean
only one thing," muttered Elmo. "It's time to die...er, dive.” Elmo let go of the
airplane and began counting. "One thousand one, one thousand two...one thousand
six...ONE THOUSAND SIX?!!" He remembered that the 'chute wac supposed to open no
later than 1004. He looked up. There was his static line fluttering in the breeze.
Flay Kee had neglectnd to attach it to the plane. Elmo would have liked to think
about what to do for a ¢ouple of hours. But somewhere in the back of his mind he
realized that haste was important. He pulled the ripcord of his emergency chute
and floatad the balancw of the way to the ground uneventfully.

5-2 Elmo's Altitude as a Function of Time

The graph, on the following page, shows Elmo's altitude as a function of elap-
sed time in seconds after letting go of the airplane. After Elmo left the plane
he gradually picked up speed. The curved portion of the graph from A to B describes
this portion of his fall. After a certain period of time his velocity no longer
increased, the force of gravity was counteracted by the friction of the air. Elmo's
speed was constant during this portion of his fall. The line from B to C describes
this phase, called the "terminal velocity" phase. After 9 seconds, his parachute

opened and his rate of descent was drastically reduced.

By now, ycu should be able to calculate the average rate of fall for any given
time period. We now wish to extend the conrcept of rate to include the idea of an
instantaneous rate. It is one thing to ask, "What was Elmo's average rate of fall
between 5 and 9 seconds after leaving the airplane?" It is quite another thing to
ask, "How fast was Elmo falling at t = 7 seconds?" This question asks for an in-
stantaneous rate, not an average rate. In order to answer the second question we

will have to describe the graph analytically, that is, in terms of an equation.

20.
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Notice that the graph appears to be linear between t = 4 seconds and t = 9 seconds.
We will write an equation of the form y = mt + b for this linear function of time.

By following our standard procedures we get the equation
Yy = —-44t + 696

for the linear portion of the graph between 8 and C. Notice that the slope is neg-
ative 44. We interpret this to mean that Elmo's altitude was decreasing at the

rate of 44 meters per second. This is quite fast. It's roughly equivalent to fall-
ing the'}ength of a football field in 2 seconds. The domain of validity for this

equation is 4 < t < 9 seconds.

5-3 Instantaneous Rates

Previously, when we calculated average rates, we divided Ay by a non-zero At.
The determination of an instantaneous rate is more subtle. The following argument

should convince you of this fact.

How long is an instant? By definition, an instant is no time at all, or 0
seconds. Therefore, At = 0 seconds, and we are in trouble already. We cannot cal-
culate the instantaneous rate in a similar fashion to average rate, because that
would imply division by zero, a no-no.

Average rate

=g
l<

=4
[nd

no <7

1
o2
"
)

16 Instantaneous rate
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How much can anything change in a time interval of zero seconds? Clearly noth-
ing can change at all in no time at all; therefore, Ay = 0. This leads to the fol-

lowing mysterious expression.

Instantaneous rate

[
J

]
oo bl
ot

If all of this is confusing, don't feel bad. It confused the ancients also. Up
until the time of Isaac Newton, the problem of how to deal with instantaneous rates
was in a state of confusion. Newton's approach was first to try to write an expli-
cit equation for the average rate for a given situation. Then he observed what
happened to the average rate as the time interval, or At, got smaller and smaller.
For linear functions this is sffaightforward. For example, we know that

Ay _
X

We can see from this formula that any choice of At will not alter m. Therefore,

when At = 0 and Ay = 0, %% is the constant m. Therefore, for linear functions, the

instantaneous rate and average rate are identical.

Now we return to the specific case of Elmo falling at "terminal velocity," the
maximum velocity of an object falling through air. We found that his height (y)

at any time (t) was given by the equation
' y = -44t + 696
in the time interval 4 < t s 9 seconds after jumping out of the airplane.

PROBLEM:

How fast was Elmo falling at t = 7 seconds?

SOLUTION:

We reason as follows. We see from inspection of the equation that the slope

of the line is -44 at any point on the line; therefore, at the instant t = 7 sec-

onds, Elmo was falling at the rate of 44 meters per second.

0
43

The % beast deserves some explicit attention. Some mathematicians. have given
it the name "indeterminate." Others have chosen to call it "useless." This is

because the quotient % may have any value at all. Recall that we can check an in-

dicated division like

7
—66 = .47
by performing multiplication.
Does 47 = (.47)(100)?

Yes, 47 = 47

Since 47 = 47, we assume that the previous statement
47
Too — 47

is also true.
8 17
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Let's see what happens when we apply a similar argument to the equation

§=14
Does 0 = 14(0)7?
Yes, 0 = 0
Since 0 = 0, we assume that the first statement is true, or
0 _
T 14

But, we did not have to choose 14. We could have chosen any number at all. For

example, suppose

3=c
where ¢ is any constant.
Does 0 = (c) (0)?
Yes, 0 = 0

And we see that the quotient % can be equal to any number at all.

The quotient % may take on any value depending on the particular situation
that it finds itself in. It is a mathematical chameleon. It is a shifty, slippery
character. You might even think of it as the politician of mathematics. It is be-
cause of the slippery nature of this quotient that it is impossible to evaluate it
directly for any given situation. Following sections will develop indirect methods
of evaluating it for a given situation. If it weren't for these indirect methods,

it would be impossible to calculate instantaneous rates.
PROBLEM SET 5:

1. The graph on the following page describes the relation between Elmo's altitude
and elapsed time while he was under a full parachute canopy. Notice that the scale
is different than the graph in the text.

a. Compute the average rate between points A and D on the graph. Show calcu-
lations.

b. Compute the average rate between points A and C on the graph. Show calcu-
lations.

C. Compute the average rate between points A and B on the graph. Show calcu-
lations.

d. On this linear portion of the graph, the average rate (does, does not)
change.

e. It is (reasonable, unreasonable) to say that Elmo's (average, instantaneous)

rate at point A is equal to the average rate between any two points on this graph.
2. What was Elmo's instantaneous rate at t = 14 seconds?

3. What was Elmo's instantaneous rate at t = 20 seconds?

23
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4. Explain why we cannot yet say what Elmo's instantaneous rate was at t = 3

seconds.

Refer to the graph in Section 5-2 to answer Problems 5 - §.

5. What was Elmo's instantaneous rate at t = 6 seconds?

6. We demonstrated that the equation y = -~44 + 696 described the terminal velocity

Q
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Aruitoxt provided by Eic:

portion of Elmo's fall (B to C on the graph). Had Elmo neglected to open his re-
serve. 'chute, how long would his fall have lasted?

7. a. Derive the equation that describes the open parachute portion of his
descent.

b. Calculate the total elapsed time of his fall.

c. Calculate the average rate for the complete trip.

8. Calculate the average rate for the curved portion of the graph in the text.

19



9. Identify the statements below that can never be true for any situation.
0

0
a. = -1 e. T -9,746,387
0 _ 0_ 5
b. 7" 20 £. 7" 2
0 _ 0 _
C. 6'— 5,376.4 g. 6‘- .333...
0 _ 0 _
d. 7 T h. - .0000002

10. The following are the equations that describe Elmo's heartbeat during the
Bonita Bash episode.

EQUATION D&MI"AIIDNI TOYF
y = 75t 0 <t < 4
Yy = 167t - 367 4 <t <7
y = 140t - 180 7 £t <12
Yy = 83t + 500 12 <t 5 15
y = 175t -~ 875 15 <t <17
Yy = 120t + 60 17 < t < 22
y = 150t - 600 22 < t < 26
y = 50t + 2000 26 < t < 30

State Elmo's instantaneous heartbeat rate for the following instants.

a. t = 13 min
b. t = 23 min
c. t = 71 min

d. t.= Y25 min

*e. Describe the problems you encounter when you try to evaluate Elmo's instan-
taneous rate at t = 4 minutes. List all times that have the same problem associated

with them.

SECTION 6: AVERAGE AND INSTANTANEOUS RATES FOR NONLINEAR FUNCITONS

6~1 Average Rates Near t = 1 Second

Just after Elmo and the airplane parted company, the relationship between
Elmo's altitude and elapsed time was not linear. It is on this portion of Elmo's
fall that we want to focus attention now. A magnified version of this phase of
his fall is on the following page. ‘

You probably recognize this curve. It is a-paraboia. As you will learn in
science, the distance a free-falling body travels is related to elapsed time by

the equation

g = 5t2

ERIC
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where = distance in meters

s
t = elapsed time in seconds
The t2 term in the equation is responsible for the parabolic shape of the graph.

Since Elmo Started out at 600 m, his altitude at any time is 600 meters minus
the distance he has fallen.
y = 600 - s

Therefore, his altitude at time t is given by the equation

Yy = 600 - St2

where y altitude in meters

t

elapsed time in seconds.

Just as before, we can calculate Elmo's average rate of fall for any given time
interval. However, the calculation of his instantaneous rate at a given time will
present new problems. An inspection of the graph will reveal that the graph grad-
ually gets steeper with movement to the right. This is equivalent to saying that
Elmo's rate of fall gradually increases. Since the slope of the graph is not con-
stant, the average rate and the instantaneous rate will not necessarily be the same.
However, we can get better and better approximations to the insﬁantaneous rate by

choosing smaller and smaller values for at.

To illustrate how we'll do this, we will approximate the instantaneous rate

at t = 1 sec.
STEP 1l: Calculate the average rate between t = 1 sec and t = 2 sec.

In order to obtain Ay we will use the equation

Yy = 600 - St2

Q | 21
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to calculate y, for two different values of t. The difference of these two values

of vy will be ay.
5(12)

1 y = 600

When t
= 600 ~ 5

= 595

600 - 5(22)

I
N
<

I

When t

= 600 5(4)

= 600 ~ 20
= 580

We see that Elmo's altitude dropped 15 m; therefore Ay = -15.
by _ z15 m
8t = "1 Ssec
- -5 W
= -15 se¢
What we have done here is to calculate the siope of the line between the two
(points A and B below).

points on the graph corresponding to t = 1 sec and t = 2 sec
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STEP 2: Calculate the average rate for the time interval t = 1 and t = 1.2.

When t = 1, vy = 595 m, as before.
600 - 5(1.2%)

When t = 1.2 y =
= 600 ~ 5(1.44)
= 600 - 7.2
= 592.8
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Elmo's altitude dropped 2.2 m; therefore Ay = -2.2 m while At = .2 sec.
Ay _ -2.2 m
5t .2 Ssec

m
~llgse.

In this step we have calculated the slope between points A and C on the following

graph.
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It is time to step back and look at what we have done so far. Notice that the

line has swung counterclockwise around point A between steps 1 and 2 as indicated’

in the graph. Now try to imagine what would happen if we moved point C closer to
point A. The line would swing around a little more. In other words, as we approach
point A from the right the slope increases (i.e. becomes less negative). We can
make a similar approach to the instantaneous rate from the other side of 1 sec. 1In
the next illustration we have graphed two lines similar to the ones related to steps

1l and 2. (See graph on the following page.)

Notice that the line that goes through A and D is rotated clockwise from the
line that goes through A and E. What do you think would happen to the slope if
point D was moved a little closer to A? The line would rotate a little more clock-
wise. 1In other words, the slope would decrease.

All of the lines we have drawn so far are called secant lines. A secant line

touches a curve at least twice. Notice that as the distance between the two points
of intersection decreases, At decreases. As At decreases, we get closer to an in-

stantaneous rate.

O
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All of the secant lines we have drawn so far have been drawn through point A
and one other point. As the other point is moved closer to point A, the slope of
the line approaches the instantaneous rate a A. Suppose that we moved the second
point until it coincided with point A. Then the line would touch the curve at only
one point. This is called a tangent line to a curve. The slope of this tangent
line is the instantaneous rate at the corresponding time t. On the following page
we have a magnified version of the graph near point A. We have shown two secant

lines and one tangent line. Points P and Q are on the tangent line.

Notice that the tangent line lies between the two secant lines. This implies
that the slope of the tangent line is between the slopes of the two secant lines.
We have already calculated the slopes of the two secant lines. The results were as

follows.

Secant Line AB: m = -15

Secant Line AE: m = -5

By inspection of the graph we can determine the slope of the tangent line.
Points P and Q both lie on the tangent line. Between the two points the rise, or

Ay, is
585 - 600

ay

The run, or At, is
At = 2 - .5
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6~-2 Tangent Lines, Secant Lines, etc.

The slope of a tangent line to a curve gives the instantaneous rate corre-
sponding to the single point of contact. The slope of a secant line gives the aver-
age rate which corresponds to the two points of contact. We will use these ideas
to determine rates from an inspection of the graphs of functions. For example,
consider the next graph. It is a brief record of Elmo's experience while taking a
flying lesson. Line 1 is a tangent line. The slope of this tangent line is the
instantaneous rate which corresponds to the point of contact. The line touches the
curve at t = 2.5 sec; therefore, the slope of the line at this point is the instan-
taneous rate at t = 2.5 sec. The slope of line 1 may be obtained from the graph.

Points D and E are on the graph of the line 1. Ay between these points is (380 -

780), or -400 m. At is 4 seconds. Therefore

Ay _ =400
At 3

Y (m)

J

AL TiTunE

As we can see, Elmo was in quite a steep dive. We can also see from the graph
that he went into an even steeper dive. After point C on the graph, the curve dives

down even more steeply.

Line 2 is a s~~ant line. The slope of this line is the average rate of climb
between t = 1 sec and t = 1.5 sec. During this time interval Elmo's average rate

. m
wasg 0 ——-.
sec
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PROBLEM SET 6:

Problems 1 through 11 refer to the graph below. It picks up the story of Elmo's
flying lessons where the text left off.
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l. Line 1 is a (tangent, secant) line. It touches the curve at point(s) .

The slope of line 1 is the (instantaneous, average) rate at time t = .

2. Line 2 is a (tangent, secant) line. It touches the curve at point(s) .
The slope of line 2 is the (instantaneous, average) rate in the interval t =
to t = .

3. The slope of line 3 is the instantaneous rate at t = .

4. The slope of line 3 is the average rate over the interval t = to t =

5. The slope of line 4 is the average rate between points and on the

curve. What is the corresponding at?
6. What was Elmo's instantaneous rate at t = 3 seconds?
7. What was Elmo's average rate over the time interval t = 0 to t = 5 sec?

8. What was Elmo's average rate over the interval t = 1.4 to t = 8 sec?
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9. What was Elmo's instantaneous rate at t = 8 sec?

10. wWhat was Elmo's average rate for t = 9 to t = 15 sec?

When were these times?

1l1. Elmo's rate was zero two times before t = 9 sgec.

SECTION 7: A LITERAL EXPRESSION FOR AVERAGE RATE

In the previous section we studied secant lines and tangent lines to curves.
The slope of a secant line is the average rate which corresponds to the two points
of contact. The slope of a tangent line is the instantaneous rate which corresponds
to the single point of contact. We also saw that we could produce a tangent line
by starting out with a secant line and moving one point along the curve until it

coincided with the other point.

MOVE & \ARD A 0 PRODUCE TANGENT :

-

SE/ANT

‘///‘uué

N TANGENT
LUNE

Je——nat
SHRINK

In this section we will duplicate algebraically what we have done So far numer-
ically and graphically. We will start out by deriving a formula for the slope of
a secant line near t = 1 sec.

STEP 1: Calculate y for t = 1 sec for the following equation. It describes
Elmo's altitude as a. function of time after leaving the airplane (from A to B on

the graph is Section 5-1).

y = 600 - St2
y = 600 - 5(1%)
y = 600 - 5

y = 595

STEP 2: Derive an expression for the change in y (or Ay) as a function of the

change in t (or at).

28 33
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Function machines will help us visualize what we are trying to do. On the left

we drop in 1 and 595 pops out. On the right we drop in 1 + At and 595 + Ay pops out.

OZ I+at UL

- a
LO0O -5t boo__s,t-'l- |

595 v 595+ b8y

In other words, we are calling the new y the old one (595) plus any change in
y (any ay) which occurs as a result of At. This is the ::ost important idea in this
section. An examination of the following graph will give another point of view on
this idea. Wwhen t =1, y = 595. Next we see what happens when we change time a
little from t = 1. We move a little to the right from t = 1 nn the horizontal axis.
We call the distance we move "4t" or "the change in t." As we move to the right

from t = 1 the corresponding value of y decreases. We ca.l the size of the change
in y "Ay" or "the change in y."

1T
T

L00

)

1Ty
IR

595

l Ay : G

| ' 5T

590 ,

(595 +ay)

——-' 4§‘_,..
L

-A L.
AT

1

f

1

1

585 T

b=

r‘*"
1
]
1

o 5 [} pu—— R 2.0

r—At—~

—(+at)

Finally, when t = 1 + At, y must be 595 + Ay. All that remains now is to sub-

stitute (1 + At) for t in the equation

y = 600 - 5t2
and (595 + 4y) for y. This will put At on the right side and Ay on the left. (Af-~
ter a little algebraic simplification we will have an equation for Ay in terms of
At.) Following through, let t = 1 + At and y = 595 + Ay. Then
v 29
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595 + Ay = 600
After squaring the (1 + At) term, we get

595 + Ay =
When the brackets are removed we get

595 + Ay =

which reduces to
595 + Ay =

Notice that there is a 595 term on both sides of the equation.

- 5(1 + at)?

600 - 5[1 + 2At + (At)2]

600 - 5 - 10at - 5(at)2

595 - 10at - 5(at)?

When this term is

subtracted from both sides, the expression becomes

Ay = =104t

- 5(at)?

We now have an explicit equation for the change in y (or Ay) in terms of the change

in t (or At).

STEP 3: Derive an expression for the average rate (or %%) as a function of

the change in time (or at).

We start with the expression

we derived in Step 2,

by = -10at - 5(at)?
and notice that if both sides are divided by At we will have the desired formula.
Ay _ -10at - 5(at)?
At At
_ -10at _ 5(at)?
At At
= =10 - 5At
STEP 4: Try to figure out what will happen when At = 0.
We can do this by substituting At = 0 into the result of Step 3 and recalling
that when At = 0, Ay = 0 too.
Ay _ _ -
it - 10 5At
0 =
7" 10

As we have previously discussed, the

words, useless. The right side is better
-10. And, we are finished.

. m
at t = 1 sec is -10 _S_GE-

is indeterminate or, in other
0,

quotient 9

0
When At = the right side is

behaved.

We have shown algebraically that the instantaneous rate

Not surprisingly this result agrees with the graphical results of the previous

section.
scribed in this section.
leaves a great margin for error.
the need to graph the function.
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The analytical method is exact.

However, you should recognize the advantages of the analytical method de-
A graphical determination of the slope of a tangent line

It also bypasses
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PROBLEM SET 7:

1. Show all work for this problem. y = 600 - 5t2

a. Calculate y for t = 3 sec.
b. Derive an expression for Ay when t = 3 + At and y = 555 + Ay.
c. Derive an explicit equation for %% near t = 3.

d. Determine the value of this expression when both Ay = 0 and At = 0.

2. cCalculate the instantaneous rate when t = 2 sec and y = 600 - 5t2.

600 -~ 5t2.

Il
]

3. Calculate the instantaneous rate when t 4 sec and y

2000 - 16t%. In this

4. Calculate the instantaneous rate when t = 3 sec and y
equation y is altitude in feet and t is time in seconds.

SECTION 8: INSTANTANEOUS RATES AND DERIVATIVES

8-1 Elmo Joins the Circus

When Elmo finally graduated from Pudworthy High School, he yearned for a life
or adventure. He thought that his sky-diving experience would make him good para-
trooper material. So he tried to join the army; but the army didn't want him.

Elmo had flat feet as a result of all the parachute landings he had messed up.
Then he tried the air force. He also had dreams of becoming a pilot. The air force
was interested until they talked to Elmo's flight instructor. Then, curiously, they

lost all enthusiasm for signing up Elmo.

Then Elmo tried the circus. This time he had more luck. A position had just
opened that was right up Elmo's alley. They told him that if he had come around
just one day earlier he would have missed out. But luckily for Elmo the previous
job holder had met with an unfortunate accident and would no longer be able to per-
form in his previous capacity. They mumbled something about, "Broken neck, tsk,
tsk,"” and hurriedly went on to say that this was Elmo's big chance to be a star,
make a lot of money, meet interesting people, travel around a lot and so forth.

At some point they pulled out a contract which Elmo signed with alacrity. But
he still didn't have a clear idea of what it was that he had agreed to do. It
didn't seem to matter, though. All day long friendly circus people escorted him
around the grounds, introducing him to other circus people and involving him in

circus-type chores like tent erecting and caga: cleaning.

Finally, the hour of the big show arrived. They put him in a shiny silver
suit with a shiny silver cape, and put a shiny silver football helmet on his head.
Elmo felt quite grand. He just knew that he was going to be involvad in something
very spectacular. His only regret was that his old high school classmates couldn't

see him now. They wouldn't laugh at him now that he was a big star.

Elmo still wasn't sure what his role was to be, but was too embarrassed to
ask. How would it look if a star asked, "Uh,..., could anybody tell me what it is
that I'm supposed to do?" Besides, these circus people seemed very nice. He didn't

think that they'd involve him in anything dangerous.

o é?(;

-
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Soon they asked Elmo to climb into his "waiting room.” Elmo found the waiting

room to be quite confining and dark. It seemed to Elmo that it was a lot like a
very fight—fitting cylinder. Elmo waited a short while and then something went
"BLAM" and Elmo began to move very quickly. Suddenly it was very bright and Elmo
realized that he was sailing through space. He had just enough time to scream
"HELP!" before he landed with a huge splash in a pool of water.

U H
As hastily as Elmo could, he shucked his silver suit and said CEMSORED
to the circus shifties that had suckered him into becoming for one night "The Mag-

nificient Elmo, the Human Cannon Ball."

8-2 A More General Formula for Instantaneous Rate at Time t

The graph below describes Elmo's experience as a human cannon ball. On the

vertical axis we have Elmo's altitude in meters. On the horizontal axis we have
2

elapsed time in seconds. The curve is a graph of the equation y = -5t° + 14t.

We will be interested in Elmo's instantaneous rate at time t. Since the vertical

axis is Elmo's altitude in meters, the rate that we get will tell us how fast Elmou's
altitude was changing. It will not tell us how fast Elmo was moving through the

air. To see this, look at the curve at t = 1.4 sec. The slope of the tangent line

there is 0. 1In other words, at that instant he was not going up or down. However,

he was flying forward.

Thus far, we have answered questions like, "How fast was Elmo going up at =

1.2 seconds?" This section will demonstrate how to answer the more general question,
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Our goal here is to demonstrate a pro-

"How fast was Elmo going up at t seconds?"
The pro-

cedure that will yield a formula that will tell us the rate at any time t.
cedure will be directly analogous to the one we demonstrated in the previous sec-
tion; however, there will be fewer numbers and more letters.

Elmo's altitude at time t is given by the equation

y = —5t2 + 14t
Elmo's altitude (y + ay) at time t + At is given by the expression
y + Ay = =5(t + at)? + 14(t + at)
Since (t + at)% = [t2 + 2tat + (Aa0)
then y + 8y = -5[t% + 2eat + (at)2] + 14(t + at)
When the brackets are removed, this becomes

y +ay = -5¢% - lowat - 5(6t)% + 14t + 1l4ast
Now we want t0 subtract the equation
y = -5¢2 4+ 14t
from the expression with all the A's in it. When we do this we get

Y + Ay = —5t2 - 1l0tat - 5(At)2 + 14t + 1l4at
-y = -5¢2 ‘ + 14t )

Ay = - 10tat - 5(at)? + 148t

Now we have an explicit equation for Ay in terms of t and At. The main dif-
ference between this expression for Ay and ones obtained earlier is the Presence .
of the variable t on the right side. This is the new feature.

Just as before, we divide both sides by at.
Ay _ -l0tat - 5(at) % + 14at

At At
_ clotat _ s(at)? | 14at
= At At At

=10t - 5at + 14

i

In order to find the instantaneous rate at t, we substitute Ay = 0 and At = 0

just as before.

i

-lot - 5(0) + 14

olo

-lot + 14

i

Again the left side is our mysterious friend g, while the right'side is well
behaved. We are done. The instantaneous rate for the function y = 5t2 + 14t at
any time is given by the expression

(instantaneous rate at time t) = -10t + 14

Although the derivation of a general equation of this type méy be more diffi-
cult to understand, it has its advantages. One of them is that we don't have to
Jo through the lengthy procedure for each different value of t. We have done it

33
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once for all possible values of t. Whenever we need to know an instantaneous rate
we merely substitute into the formula instead of dealing with all of those A's
again.

For example, at what rate was Elmo going up at t = 0 sec?

m = ~-10t + 14

-10(0) + 14
= 14

Therefore, Elmo was going up at the rate of 14 EEE when he left the cannon. It may
seem a little strange to have a rate other than 0 at t = 0, but keep in mind that
Elmo was building up speed inside the barrel of the cannon before time zero.

8-3 oOne Last Example

PROBLEM:
How fast was Elmo going up at t = 2 gec?

(instantaneous rate at time t) = -10t + 14
t =2 ) B

rate = -10(2) + 14
= -20 + 14
= -6

Now, what does this -6 mean? Since the units for altitude are meters and the units

for time are seconds it means that his rate was -6 meters per second.

The next problem is the meaning of the negative sign. What does going up at
a rate of negative 6 meters per second imply? It means that Elmo was actually com-

ing down at the rate of 6 meters per second.

8-4 A Notation Convention

When the quotient _X is evaluated at At = 0 it is customary to represent the
instantaneous rate by the expression _X_ For example, Elmo's rate of change of

altitude at time t is written
= =10t + 14

%I-%

and is read, "dee y dee t is -10t + 14."

In other words, instead of writing the expression, "instantaneous rate at time

T

The term that is used to describe g{ is the word "derivative." In other words,
2

t," we write

=10t + 14 is the "derivative with respect to t of y = 5t” + 14t." The process of
determining g% is called "taking the derivative." It is also called "differentia-

tion," and to find ax is to "differentiate" y with respect to t. These new words

and phrases all come from the area of study known as "the calculus."

34 3 9
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Incidentally the term calculus is used by health professionals in a very dif=-
ferent way--a gall stone or a kidney stone is often referred to as a calculus. As

a matter of fact, both the mathematical term and the medical term stem from the
Latin word "calculus," meaning pebble. 1In ancient times, strings of little stones,

something like an abacus, were used for counting and calculating, and now calculus

is used for the branch of mathematics that you are beginning.

PROBLEM SET 8:

For Problems 1 through 5 find the instantaneous rate at time t, or, in other words,
g%, for each of the given equations. In still other words, find the derivative of
Yy with respect to t. Show your work.

1. y = 29t% + 14t

t2

2. y=:—0—o-"16t+4

3.y = /3t% - 4e + 21

a. y =38t2 - 12t + 9
2, ¢t

5. y = 4t + 7 = 10

6. Mathematicians refer to the process of finding g% as "taking the
with respect to t."

7. Use two English phrases to describe the work below. One phrase should use *he

word "rate" and the other should use the word "derivative."

y = 10t + 2
y + oy = 10(t + at) + 2
= 10t + 10at + 2
Yy -y + 8y = (10t + 2) - (10t + 2) + 104t
Ay = 10aAt
a¥ = 105%
= 10

H = 10

SECTION 9: TAKING THE DERIVATIVE OF A POLYNOMIAL

9-1 what is $¥ for y = xt™

The answer to this question is

d

dy 1
dt

= knt"”

Section 9-3 explains how this result is obtained. However, those of you who do not
like derivations may skip reading that section and go directly to the problem set.
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Section 9-3 is only for those students who have some intellectual curiosity about
why things are the way they are.
The following problem demonstrates the use of the basic formula.

PROBLEM:

for vy = —5t2

e

Determine

SOLUTION:

The general formula s+aies that when y = kt"

dy _ n-1
3t = knt

In our particular example
2
y = =5t

and we see that k = -5 and n = 2; therefore,

dy _ ,_ (2-1)
H= @t
or,
dy _ ;.1
at = -lot
dy _
gt = -lot

Unfortunately, we seldom encounter only one term on the right side. For example,

Elmo's flight as a human cannonball was described by the equation
2
y = =57 + 14t
which is the sum of two terms with t in them. Fortunately, this poses no major
problems. We may apply the formula to each term on the right one at a time. The

next sample demonstrates this procedure.

PROBLEM:
Find 3L for y = -5¢2 + 14t
SOLUTION:
We rewrite the equation to show all exponents explicitly

y = -5¢2 + 14tl

Now we apply the rule gx = ntn—1 to each term on the right, one at a time.

t
H =5 @¢e2 4 gy )el?
= 10t + 14¢°
Since tO = 1 the above eguation reduces to
dy - _
gt = -l0t + 14

which agrees with our earlier result.

41

36

ERIC

Aruitoxt provided by Eic:



9-2 Some Non-Obvious Extensions of the Formula

. d _
What happens when y is a constant? In other words, what is 5% when y = k?
Since vy

We can find the answer to this question by using our powers of reasoning.

does not change, no matter how long we might wait, the rate of change must be Zzero.

We can also answer the question by using our new formula. We remember that any num-

ber raised to the zeroth power is equal to 1. Specifically,

to =1

. 0
Now we can use this in the equation y = k, by observing that y = kt . Then we apply

the differentiation rule to get

k(o)t21

1

242
It

k(0)t~

=0

and we see that the formula gives us the same result that we expected by just think-

ing about rates of change.

Now we move on to a different sort of situation. We will show how tc differ-
entiate the function

y=

=

where k is an arbitrary constant and t is some measure of time. Mathematicians say
that y is inversely related to t. This terminology is based on the common-~sense
observation that as t gets larger, y gets smaller, hence the behavior of y is "in-

versely" related to t.

It is easy to give a couple of common qualitative examples of this sort of be-—
havior. For example the selling price (y) of an automobile decreases as the car
gets older (t increases). Another example. Your ability to expire air in a pul-

monary funciton test (y) decreases the longer you try to expire air (t increases).

Now back to the mathematical business at hand--finding %% for vy = %. It might
not appear at first sight that we could apply our differentaition formula to this
equation. The equation is not in the form y = kt". However, it is possible to

in this form.

=

write y =

First we remember from our work with scientific notation that

107! = Ll = .1
10
1072 = % = .01
10
and in general n _places
1077 = Ln = m
‘ 10

What is true for powers of 10 is true for powers of any number. In other words,
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We can apply this idea to the equation

k
Y=t
We notice that this is equivalent to
y = k(D)
and since t 1 = %,
y = ket
Now the equation is in the y = kt" form where n = -1, We apply the differentiation
rule to get
y = k(-1)t™11
= -kt 2
- _ k
t2

From this we see that we can find instantaneous rates for inverse relations.
The following example shows how this process may be applied to negative powers of

t greater than one.

PROBLEM:
_3 1o 6
YTEt 2710
ind 3
Find e
SOLUTION:

First we rewrite the equation so that all of the powers of t are removed from

the denominators.

vy =3t71 4 10672 - g7 10
~ Next we apply the rule g% = knt"~ 1 to each term.
dy _ 2/ 74.-1-1 Coye=2-1 -10-1
a%-a(l)t + 10(-2)t 6(-10) ¢t
=--3t72 - 2073 4+ 6ot71?

We could leave the equation in this form or we could put the t's back in the denom-

inators. This last possibility is shown below.

t t t

9-3 Why Does the Formula Work?

Let's start out our explanation by simplifying things a little bit. We will
let k = 1 in the equation y = kt" and take care of k # 1 later. So now we will

focus our attention on the equation

and proceed as we have done earlier to derive an expression for Yy + Ay as a func-

tion of t + At.
’ y + oy = (t + at)"
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From our experience with the binomial theorem we know that the expansion of

the term on the right will be of the form

n tn-l

At + (terms containing (At)2
or higher powers of At)

(t + o) = £ + n

For reasons that will become obvious very shortly, we will be mainly interested
in the first two terms of the expansion. For example, when n = 3 the first two
terms of the expansions are

£3 + 360G Ve = £3 4 362 e

When n = 2 they are

£2 + 262D e 2 2 4 2eae

And when n = 100 the first two terms will be

£100 4 100t%%¢

Now we look at the rest of the terms. Whenever n is greater than one, there

will be more than two terms in the expansion. All we need to know about the rest
of them is that they will all contain powers of t that are two or greater. This

is all we need to know because after we divide the right side by At and then sub-
stitute in At = 0, they will all disappear. More about this later. For conven-

ience we will use the word "garbage" to refer to all of these terms.

So now we can write
(t + at)™®
tn-—l

y + Ay

n

=t +n At + garbage

. n o .
Since y = t we can eliminate these terms from our expression.
n n n-1

- t

y -y + Ay = t t"  +n At + garbage

ay = nt™ Lot 4 garbage

To get an expression for the average rate we divide both sides by at.

ay _ nt" Lot 4 garbage
At At
n-1
= nt + 39%%323 (= Average rate)

Now it is time to look at the term gé%%egg. We know from the binomial theorem
that the garbage will have the form (constant)(At)2 + ... + (At)n. When we divide
the garbage by At we get gé%%ggg = (constant)at + ... + (At)n—l.

Now notice that when At = 0, the right side vanishes. Therefore when At = 0,

garbage _ 0
At :
Now we return to our expression for average rate.

8y _ ,¢0-1 | garbage
At At

When At = 0 we get

g% = nt" L 4 o

and we are finished with this part of the explanation.
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To complete our explanation we must deal with the k term in the equation

y = kt"
We proceed as before.
y + 0y = k(t + at)"
= k(t" + nt"lae + garbage)

1

kt"™ + knt"""at + k(garbage)

Since y = ktn, 1

ay = knt" st + k(garbage)

Dividing through by At we get

Ay _ kntn—l + k(garbage)

At At

and when At = 0

and we are completely finished.

PROBLEM SET 9:
1. g% may be found for the equation y = 16t4 by applying the relation g% = kntn—l
for the general equation y = kt™. ’

a. What is k for the equation y = 16t4?
b. What is n for the equation y = 16t4?
c. What is g% for y = 16t4?
ig QY = 1,
d. What is It when t = 2’
Calculate g% for each of the following expressions.
2. vy = 4t? + 2¢
3.y =50 o3
60
4. y =1+ 3t + 3¢2 4 ¢3
32
= ~4t2 + £
5. y = —-4t° + )
2 7

In Problems 8 through 12 determine g%. The given expressions for y may be differ-
entiated by first carrying out the indicated multiplications.

8. y=+¢t(1l + t)
9. y = (t - 1)2
10. y = (t-1) (t-2)
11. y = t(t - % + i%)
_ t
12. y = £t + £2 - 1)




13. Professor F. Lee Bitten had a lot of time on his hands. He had an unfortunate

Consequently he was spending a great deal of time in a state-—
To keep his mind sharp he studied the hab-

After years of intensive study he found

run-in with the law.
operated institution of incarceration.
its of some small cellmates, i.e., fleas.
that the distance (y) in meters of a flea from a central release point was related

to the time (t) in seconds after release by the equation

y = 3¢26 o ¢34 f 11 37 o463 L6k 4 2L %t_s + 3¢7°

Show that the flea was moving away from the central release point at the rate of

-1 meters per second, one second after release.

REVIEW PROBLEM SET 10:

went to the store on Monday to buy a quart bottle of Hootchie-~Cola; the

Elmo
On each of the next seven days, Elmo came back for another

price was 40 cents.
bottle of cola; and each day the price was higher than before.

Here is a graph of price vs. time for a quart bottle of Hootchie-Cola.

i ' ]
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1. a. Wwhat was the average rate of change per day for the price, over the entire

period?
b. What was the average rate of change
day to the sixth day (Points A and B on the graph)?

per day for the period from the second

Problems 2 through 5 deal with a fictitious relationship between dental costs and

toothpaste.
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The Fubar Toothpaste Company claims that you can save a lot of money on dental
bills by using their toothpaste. 1In fact, they claim that the more you use, the

more you save.
Below is a graph taken from one of their research reports.
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The y values correspond to the amount of money a person spends on dental bills,
for one year. The values indicate the number of tubes of Fubar toothpaste that a

person used during the same year.
Notice that this graph consists of two parts:

a. from T =0 to T = 10 (that is, from Point A to Point B), the graph is a

straight line, with equation
y = -100T + 1250

b. from T = 10 to T = 15 (that is, from Point B to Point C), the graph is a

parabola, with equation

2

y = 10T° - 300T + 2250

2. a. What is the average rate of change of y, between T = 2 and T = 7?
b. wWhat is the average rate of change between T = 6 and T = 72

42 '
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a. Use the %% method to find the instantaneous rate for arbitrary T between

3.
T=0and T = 10.

b. Find the instantaneous rate for arbitrary T between T

time using the formula for g% when y = kT".

0 and T = 10, this

4. a. Find the instantaneous rate for arbitrary T between T 10 and T = 15 using

the %% method.
b. Find the instantaneous rate for arbitrary T between T = 10 and T

= 15, this

time using the formula for %% when y = k7",

The Point T = 10 (Point B on the graph) lies on both the linear and the parabolic

portions of the graph.

5. a. Compute the instantaneous rate at Point B, considering this point as a part
of the straight line. That is, use the formula g% for points on the line.

b. Compute the instantaneous rate at Point B, considering this point as a part
of the parabola. That is, use the formula for g% for points on the parabola.

6. Differentiate the following functions. Use the formula for gz for y = kt™.

t
a. y= t3 + %tz + 1
b. y=t?+ e+ 2t
c. y=+¢t>-2t? 4+ 3¢ -1
a. y=%—t3+%-t2+t+l
_ 1.4 ,1,3 1.2
e. y = f?t + gt + 7t + t +1
£. y = T%—ats + -2—14—t4 + -]6-'-t3 + }z-tz + t + 1
g. y= Ji + 2t2
t
h., y=t"% 4¢3 4 ¢5
Below is a portion of the graph of the function y = —x3 - x2.
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That is,

7.

Show that the tangent to the curve at the point x = 0 has slope 0.

Find the derivative of y = —x3 - x2.

(Hint

find the instantaneous rate at x = 0.

Then substitute x = 0.)

Find the slopes of the secant lines which cross the curve in the following

8.

That is, compute the average rates between the following pairs

pairs of points.

of x-values by substituting the x-values into the equation in Problem 7

-.05 and x = 0

X =

d

MAXIMA AND MINIMA

SECTION 11

1l1-1 Peaks and Valleys

Now that we can differentiate polynomials we have all the tools necessar

y to

In order to introduce this new kind of problem we

solve another kind of pioblem.

will return to Elmo's unhappy experience as a human cannonball and make a cou

ple of

When he splashed

at some time in between these two times he stop-

When he left the cannon he was going up.

additional observations.

Obviously,

down he was going down.

Now look at the graph of Elmo's altitude as

ped going up and started going down.

(In other

At what time did Elmo reach his highest point?

a function of time.

words, when did he stop going up and start going down?)
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This is the time at which

He reached the peak of his flight at t = 1.4 sec.

Elmo stopped going up and started going down. What was Elmo's instantaneous rate

at this time? If he was neither going up nor down at this instant then his rate
Another way to reach the same conclusion is to look at the
At the start of his flight the slope
This means

must have been zero.
graph and think about slopes of tangent lines.
is positive. At t = 1.4 sec the tangent line is parallel to the x-axis.

that the slope is zero at this point. Now we know that the slope of the tangent

line for any time t is given by the derivative of the height function.

= 5¢2 + 14t

]

dY - _10t + 14

Q)

t
Now, suppose that we did not know beforehand that when t = 1.4, g% = 0 and we

We would reason as follows.
If we set

wished to find out the instant when Elmo was highest.

The slope of the tangent line must be zero at the peak of Elmo's flight.
g% = 0, then we can solve the equation 0 = -10t + 14 to find the instant when Elmo

peaked out. Following through we have

0 = -10t + 14

-14 = -10t
-14 _

o - ¢t
1.4 = ¢

which naturally agrees with every other aspect of this overworked example.

We'll end this subsection by commenting on terminology. Occasionally mathe-
matical language differs from what seems easy and natural. We are referring to the
peaks and valleys of graphs. 1In this case, mathematicians prefer Latin to English.

A peak is a maximum, peaks are maxima. A valley is a minimum and valleys are minima.

11-2 A Less Overworked Example

We will show that we can use the same line of reasoning described in the pre-

vious section to analyze a more complicated situation.
PROBLEM:
What values of t ceorrespond to peaks and valleys (maxima and minima) of the

function

3

y = 2t3 + 6.6t2 - 10.2t?

SOLUTION:

First of all we recognize that the question above is equivalent to asking, "For
. d " .
what values of t will 5% = 0? Then we see that in order to answer this guestion
we must first differentiate the function.

3

= 2t3 + 6.6t% - 19.2¢

me <
1

203)t% + 6.6(2)t - 19.2

6% + 13.2t - 19.2

1
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Next we let g% = 0 and solve the equation for t.

0 =6t2 + 13.2t - 19.2

We see with some little dismay that this is a quadratic equation. Of course
we can solve it by a blunt application of the quadratic formula which we all inme-

-b + /b% - dac

2a

diately remember as

t =

But b = 13.2 and there is a (bz) term. Ugh! That's not the end of it. The (-4ac)
term is (-4)(6) (-19.2). Few people enjoy the number cranking indicated here. Ob-
viously it is high time to look for a shortcut of some sort. One shortcut that
sometimes works is to divide the whole equation by the coefficient of t2. In this

- case it is 6. If this works out nicely it has the effect of making all of the num-
bers involved here smaller. This generally tends to minimize calculation headaches.

Following through, we have

0 = 6t2 + 13.2t - 19.2
Dividing everything by six we get
o _ 6t 13.2¢ _19.2
6 6 6 6
2
0=+ + 2.2t - 3.2

Now an application of the quadratic formula is less painful. The process is
straightforward and the details should be familiar to you by now. We won't bore

you with them here. The end result is
t=-1.11+ 2.1
t =-3.2
and t=1
Theée should be the t values which correspond to the maxima and minima of the func-

_tion y = 2t3 + 6.6t% - 19.2¢t

A graph of the function is shown on the following page. An inspection of

the graph will confirm that there is indeed a valley that corresponds to t = 1 and

a peak that corresponds to t = -3.2.
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11-3 A Practical Example 1-2x

PROBLEM: Suppos® that we have a square L 4

piece of sheet matal 1 meter on a side l
that we wish to make into a container. |
We want to do it by cutting square pieces
out of the cornhers as shown opposite.

4

I METER I-R2x

We wish to find out how big the little -~ 9 r -
squares should be so that the container | !
will have the maXimum volume.

SOLUTION: We start out by making some rough observations. If x is small, then the
resulting container will be very shallow and won't have much volume. On the other
extreme we could make x very close to
-5 m or half the length of the side. What' X \Y; CONTAINER.
would the volume of the container be then?
The answer is that once again the volume
would be small because the base would be

very small. We can summarize the reason- SMALL SMALL g

ing thus far is the table opposite.

We can see that the problem is shaping ? MAXIMUM
up as one of locating the peak volume for
some value of x. 1In other words, we are ALMOST Spy | SMALL []

looking for a maximum.
» Sm 0 IMPOS5 B LE-
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The second step on the road to the solu-
tion is to express the volume as a func-
tion of x. Recall that the volume of a
rectangular solid is given by the length
times the width times the height. Alge-
braically this is V = LWH.

Refer back to the diagram of the piece of sheet metal. The length and width will
both be (1-2x). The height of the container will be simply x. Therefore,

V = LWH
(1-2x) (1-2x) (x)

Now we have an expression for V in terms of x, but it is not in a form which we can
differentiate. We will have to carry out the indicated multiplications first.

\

(1-2x) (1-2x)x

(L - 4x + 4x2)x
3

X - 4x2 + 4x

= 4x3 - 4x2 + X

Now is the time to apply the method we introduced earlier. First we find the de-

rivative

dv _ 2
a;(——le 8x + 1

Second, we equate the derivative to zero and solve for x.
0 = 12x2 -8x +1

This is a quadratic equation. The quadratic formula will give us x. (We will not
divide everything by 12 because that would generate fractional coefficients and they

are more difficult to calculate with than large whole numbers.

- —(-8) * /64 = 4(12)
24

X

=4 = 12
x—ﬂorx—24

_1 _ 1
x—-é-orx—i

% is the answer. 1In other words, the container will

Since x = % is impossible, x
have a maximum volume when the height of the container is % meter and the length of

the base is [1 -~ 2(%)] ﬁéférwlong or % meter.

O
Q

48

ERIC

Aruitoxt provided by Eic:



PROBLEM SET 11:

l. Greasy Weasel was an infamous stunt
man. For a time he captured the imagina-
tion of the country with his proposed leap
of the Salmon River canyon on his Heaven b=5¢"
Cycle. The diagram opposite outlines how

he proposed to attempt the jump. He plan-

ned to rocket off an inclined ramp at a

speed of about 180 meters per second (400
mph). Greasy's engineers used vector analy-
sis to determine that his vertical speed would be 150 m/sec and his horizontal speed
100 m/sec. The ramp had an inclination of 56°. It is possible to derive his height
as a function of time after blastoff from this information. It is

2

h 150t - 5t

where h height in meters

t = time in seconds after blastoff.

a. Differentiate the height equation.

b. Equate g% to zero and solve for t. This is ‘the number of seconds required
for Greasy to reach his peak (maximum) altitude.

C. Substitute your answer to Part b into the height equation. This will tell
You his peak altitude.

d. Greasy's technicians figured that his horizontal position at any time t
would be given by the equation

d

100t

where d distance in meters

t = time in seconds after blastoff.

Substitute your answer to Part b into the above equation. This will tell you
how far Mr. Weasel had traveled horizontally when he had reached his peak altitude.

€. Mr. Fearless, Mr. Weasel's nickname, had been told by his technicians that
he shoulan't open his parachute lower than 600 m (about 2,000 ft.). The equation
(*) below when solved for t will tell you the two times when Greasy had an altitude
of 600 m. How many seconds after blastoff should Greasy pull the ripcord on his
landing chute? State your answer to the nearest second. Diagramatically, we are
finding the time t2 that corresponds to the situation below.

2

600 = -5t2 + 150t
0 = 5¢%2 - 150t + 600
(*) 0=t% - 30t + 120
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f. Substitute your answer to Part e into the equation d = 100t to find the
horizontal distance that Greasy had traveled when his parachute had opened.

g. After Greasy's 'chute had opened he fell at the rate of 5 meters per sec-
ond. By the time his 'chute was completely open his altitude was down to 500 meters.
Therefore, his altitude at time t after the instant of deployment is given by the

equation Initial Falling
: height rate

h = 500 - 5t

where h height in meters

t = time in seconds after full opening of ‘chute

Substitute h = 0 into the ahove equation to find out how long it took Mr. Weasel to

reach the ground.

h. After Greasy's 'chute opened he was at the mercy of the winds. Unfortu-
nately, on the day of the jump there was a headwind of 11 meters per second (about
23 mph). Greasy'had traveled 2600 m horizontally before the winds took control of
his fate. Therefore, his horizontal distance after opening is given by the equation

d = 2600 -~ 11t

horizontal distance from launching
ramp (in meters)

where d

t = time after full deployment of 'chute
(in seconds)

Substitute your answer to Part g into this equation to find Greasy Weasel's hori-

zontal position when his altitude was zero.
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i. 1If your answer to Part h was less than 1490 m, then Greasy was blown back
over the edge of the canyon. By how far did Mr. Fearless miss the edge of the

canyon?

2. a. This problem is very similar to one described in the text. A square piece

of sheet metal is to be folded to make a container. One side of the square is 12

meters long. Square pieces are to be cut out of each corner. How big should the

pieces be so that the volume of the container is a maximum?

—— x|
T T
| |
] |
| 1 IS
2 12-2X
- ———1=
I [
I I
J_. | ]
b. What is the volume of the result-
ing container?
BAZN)
3. Chester Chickeneaner has 20 m of
fencing. He wants to make a rectangular clickENS

chicken pen with part of his barn forming
' "‘!‘N/\?’ "
one side.

a. Recall that the area of a rectan-

gle is the length times the width. Write 20-2%
an expression for the area of the pen.

b. Differentiate the expression of Part a.

c. Equate g% to zero and solve for x.

d. Substitute the value of x found in Part c back into the area equation and
calculate the corresponding area. This

will tell you the maximum area for the

rectanjyular pen. BARN
e. Calculate the area of a semi- // perimeter =
circular pen made from 20 meters of fenc- W / 20 =
ing. ' / Area =
f. Should Chester build a rectangu-
lar or semicircular pen to get the most "
area? -
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4. Paul Tree is also a chicken rancher. BAarRN
CcHICENS, T LOCOS T B =y, ?

He too wants to build a rectangular chick-
en pen with his barn forming one side.

«— x —>

He has 30 m of fencing and he wants to x x
build a partition between the hens and i w
roosters to prevent random breeding. The

IO~

pen is diagramed opposite.

a. What should x be so that the
area is a maximum?

b. what is tne maximum area?

5. Parcel Post regulations state that the combined length and girth of a package
cannot exceed 84 inches for a package shipped inside the United States. (The girth
is the distance around the package as shown below.)

a. Write an expression for the volume
of the diagramed rectangular package with
the square ends.

b. Differentiate the equation with
respect to x.

c. Egquate g¥ to zero and solve for

d. What is the maximum volume of

such a package?

6. For packages shipped internationally

there are different regulations. The \

length plus the girth may not exceed 72 GEARZTH 15 THE DisTANICE
ARDUNID oz G>¢.

inches. Calculate the dimensions of the

maximum-volume vectangular package with square ends whose length plus girth does

not exceed 72 inches.

7. a. Calculate the radius and length of a Ccylindrical package with the maximum
volume so that the length plus the girth does not exceed 72 inches.

b. Suppose that you wanted to ship
some cloth from Guatemala to the United

States. You could either fold it into a volume = nrzh
rectangular package with square ends or n girth = 2nr
roll it into a cylindrical package. Which h =72 - 271r

type of packing would permit you to ship
the most material in one package? Justify your answer. You may use approximation

22 .
™o in your answer.

8. This problem requires us to refresh our memories concerning the two trigonomet-
ric functions sin 9 and cos 8. Suppose that a perfect spring is stretched and re-
leased. It so happens that the displacement of the spring is a sine (or cosine)

function of time. We have sketched a description of this situation on the follow-
ing page.
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Now that you have learned something about maxima and minima, you an determine
some new facts about the behavior of the sine function.

a. Inspect the graph of sin t. List four values of t that correspond to peaks
and valleys of sin t.

b. List four values of t that correspond to points at which the slope of the
tangent line is zero.

c. What is the first time on the graph that corresponds to an instantaneous
rate of change of position = 0? In other words, when did the spring first stop
going up and start going down?

d. Inspect the graph near t = r. Estimate the slope of the curve at this
point. This may be done by laying a ruler on the graph. Position the ruler so that
it appears to be tangent to the curve. Then determine the slope of the ruler by
estimating a rise-run pair.

e. Do the same thing for the curve at t = 2r.

f. At what points on the graph does the slope have its greatest absolute value?

g. At what times is the spring moving fastest?

h. At what times is the spring moving slowest?

i. Fill in the table that follows.

(Recall that the graph of cos t is as follows.)

a X 2w y= co=lt)
Vv .9 ¥ T
, d(sin t)

t sin t —ac cos t

0 0

T

5 1

T 0

3n

> -1

27

Sn

Z

3 0

I

= 1

5!? 53

ERIC

Aruitoxt provided by Eic:



Problems 9 through 11 require some review of ideas relating to measures of
central tendency. Recall that the mean and median are both measures of central ten-

dency. The mean is the sum of a collection of numbers divided by the number of num-

bers. 1If you get scores of 85, 70, 90, 100 and 80 on five tests, your mean grade is
85 + 70 + 92 *+ 100 + 80 or 85. The median is the "middle" value of a set of num-

bers. Half of the numbers will be greater than the median and half will be less.
(In the example given, your median grade is 85.) There are some special cases that
are more complicated than this, but this is the general idea.

9. We will start out with a simple example. (Car collection of numbers is small.
It is the set {1, 9}. We want to find a number, x, such that the sum of the squares
of the deviations from x is a minimum. First we write an expression for the sum of
the squares of the deviations.

s=(x -12% 4+ (x - 9)2

(x2 - 2x + 1) + (x2 - 2+9% + 92)

Find x such that ds = 0.
dx

10. a. Find x such that the sum of the squares of the deviations from x is a mini-
mum for the set of numbers {1, 3, 4, 6}.
b. Find the mean of the set of numbers (1, 3, 4, 61.

11. In this problem we will attempt to generalize from the experience of the pre-
vious two problems. We will consider the set of numbers n;., n, TS U (in other
words, a collection of z arbitrary numbers). Wwhat value of x will make the sum of
the squares of the deviations from x a minimum?

a. First we write an expression for the sum.

s = (x - nl)2 + (x - n2)2 + ... + (x - nz)2
Show that
= 2x% - 2x (n, + + +n)+ (n:2 + n.2 4 2)
s = zx X n‘l n, ‘e n, ny n, SR L
(n1 + n, + ... + nz)

b. Show that when x = z

the sum will be a minimum.

C. We have given a name to the expression in Part b. What is this nzme?

12. WwWhy do tin cans have the shapes they have? 1Ima Goodwin asked this guestion of
people on the street in her role as a newspaper reporter. Not too surprisingly she
found that most people hadn't really thcught about it before. However, when they
thought about it a little bit they generzlly were able to come up with a reazou.
The reasons people came up with tended to fall into two broad categories, the sub-
jective and the objective. Typical of the subjective reasons is the fcllowing one
which was given by an artist. He said, "I think that manufacturers would want to
choose a shape which is pleasing to the eye. They wouldn't want a shape which would
be offensive. People wouldn't be inclined to pick it up. On the other hand, they
would want a shape which would be eye-catching, a shape which would make the can
stand out from other cans."
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Typical of the objective replies is the one given by an engineer. She said,
"Obviously, a manufacturer would want to make the cheapest container possible. One
way to do this is to use the smallest amount of material which will contain the vol-

ume of product.”

What motivates the canned-food people, aesthetics or economics? We can tackle
this question by applying our "max-min" procedure to the material needed to make tin
cans. By doing so we can determine the optimum shape of a can from the point of
view of using the least material to contain the most product. If the shape of a
can differs sharply from this optimum shape, then some other consideration was prob-

ably involved in deciding what shape the container was to have.

A typical tin car jis known in the math trade as a "right circular cylinder."

Everybody agrees the volume of such a beast is given by the formula

vV = (nrz)h
where nr2 = area of base
h = height

2 —

!
[

T

The expression for the area is a little more complicated. On the right we have
a picture of a tin can that we have worked on a little bit with a can opener and tin
snips. We took a can open=2r to the ends and used the tin snips to slice the wall
of the can from one end to the other. The wall is then laid out flat. This rec-
tangle has a length equal to the circumference of the bottom. The width of the rec-
tangle is equal to the height of the can. Consequently,

Surface area Surface area + Surface areas of
of can of wall top and bottom

A = 2mh + 2nr2

Notice that this equation has :wo variables on the right. We cannot apply
our "max-min" procedure until we have area as a function of only one variable. We

can arrange this by using the volume equation.
vV = nrzh

anda
v

P4

1r

Tnis may be substituted into the area equation.
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\%

A = 24¢ —7 + 2wr
Ar

A = %; + 2wr2

A =2vrl 4 2402

Now we can differentiate A with respect to'r while holding V constant.
a Find da
. I
da 3
b. Equate dr to zero and solve for r’.
C. Substitute nrzh for V in the equation found in Part b. Then, solve for r
in terms of h.
d. Show that when the diameter is equal to the height then the amount of mate-

rial in the can is a minimum for a given volume.

13. oOftentimes the material used in the can itself T
is not all the material actually used in the con-
struction of the can. The tops and bottoms may be
.r—.
z2r

stamped from square pieces of metal. Consequently,
the amount of sheet metal actually used in the con-

struction of the can is given by the equation

A = 2(2r)2 + 2nrh

-+

Follow the procedure outlined in Problem 12
to show that when the diameter (D) is related to the
height (h) by the equation
h

INTREERNE

h

then the amount of material actually consumed in the construction of the can is
a minimum for any given volume.

The moral to this story is that if a tin can has a diameter, D, in the range

ul g < D<h then it is efficient in its use of materials to contain its volume.

o

SECTION 12: A CRASH COURSE IN MOMENTUM

12-1 Momentum

In the Biomedical Science course you will be investigating trauma. Trauma is
the branch of medicine that deals with smashed bodies and broken bones. 1In the
United States automobile accidents are the leading cause of traumatic injuries.
Since trauma is caused by human bodies colliding with inanimate objects like bridge
abutments and cement trucks, we are going to have to learn a little physics about
moving bodies. In math we will deal with the idea of momentum and rates of change

of momentum. Momentum is simply the mass of an object multiplied by its velocity.

It is a very central idea in the physics of collisions. Fortunately idea of
momentum is intuitive. If you can answer the questicns on the followii, ge
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correctly you already have a sense of momentum on a conscious level. On an uncon-

scious level you are already using the concept of momentum. Running, walking, and

standing all require a fundamental knowledge of momentum.

QUESTION 1: Two vehicles going 60 kph hit an overpass support on two different
days. One was a VW bug. The other was a fully loaded cement truck. Which vehicle
caused the most damage to the overpass support?

ANSWER: If you guessed the cement truck you were correct. The principle in-
volved here is that the object with more mass will have more momentum when both ob-

jects have the same velocity.

QUESTION 2: Two cars of the same mass hit a bégdge abutment on two different
days. One was going 10 kph just before the collision. The other was going 60 kph
just before its collision. In which automobile would you rather have been a passen-
ger?

ANSWER: If you chose the slower moving car, your survival instincts are good.
The principle involved here is that the faster an object is moving the more momen-
tum it will have. 1In this case the object in question is your own body and it would
have to have the same speed before collision that the different autos had.

We will conclude this subsection with a discussion of the algebraic statement
of momentum.
P = mv
where "p" is the accepted abbreviation for momentum

m = mass
velocity

it

v

The letter "p" might seem like a strange choice for "momemtum," a word which
starts with "m" and dpoesn't have "p" in it anywhere. However, it should be obvious
that "m" would be a bad choice. "m" is already used as an abbreviation for two
common physical quantities. It is used for both "meters” and "mass.” To have it
mean momentum as well would lead to mass confusion. On the other hand P has a
powerful, explosive sound which is easy to associate with impulses and impacts, both

of which are generally connected with changes in momentum.

Now let's look at the formula
P = mv
and see if it behaves the way we want it to. Recall the answer to Question 1. We
concluded that if two vehicles were going the same speed, then the more massive one
would have more momentum. We can easily show that the algebraic statement of momen-
tum leads to this same conclusion.
Cement truck: mass = 23,000 kg
velocity = 60 kph
P = (23,000) (60) kg-kph

D
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VW Bug: mass = 1,000 kg
velocity = 60 kph
p = (1,000) (60} kg-+kph

We can see that the cement truck had 23 times the momentum of the Bug.

Now recall the answer to Question 2. We concluded that if two objects had the
same mass, then the faster of them would have more momentum. Imagine Ima Goodwin

as a passenger of both cars.

Slow car: Ima's m = 55 kg
Ima's v = 10 kph
Ima's p

= (55)(10) kg-kph

Fast car: Ima‘s m = 55 kg
Ima's v = 60 kph
Ima's p = (55) (60) kg-kph
We can see that if Ima had been a passenger in the ill-fated fast car, her momentum
would have been 6 times the momentum she would have had as a passenger in the slow
car. And we see that the algebraic statement agrees in every way with our intui-

tive feelings about how things ought to be.

12-2 Rate of Change of Momentum

The rate of change of momentum is the major consideration in relation to what
happens to a human body in a collision. The more rapid the rate of change the more
likely that a severe injury will result. If the rate of change is slowed, a victim
of a collision has an increased chance of survival. On a gross level this is what
parachutes are for. They decrease the velocity of the falling body which in turn

decreases the momentum with respect to the ground.

We have graphed momentum as a function of time for a parachutist and a para-
chute-less jumper.' The time interval is near the moment of impact with the ground.
Curve #1 describes the momentum of a 90-kg (200-1lb) man falling at a terminal velo-
city of about =54 m/sec (120 mph). Curve #2 describes the change in momentum of an
equally massive man under a parachute falling at about =8 m/sec (18 mph).

It is immediately obvious that the slope of Curve #1 is much steeper than
Curve #2. We know by now, without calculating, that the absolute value of the rate
of change of momentum is much greater for Curve #1. Upon closer inspection we no-
tice that there are two reasons for this. First of all our unfortunate parachute-
less jumper had more momentum to start with. Secondly, he took less time to stop.
The reason for this may not be obvious. Suppose that both jumpers stopped in about
the same length, that is, the length of their bodies. Since the parachuteless fel-
low was going faster, he covered this distance in less time. This effect may be
sensed by performing a simple experiment. You will probably have to wait until you
get home to do it unless you are in the habit of bringing a pillow with you for
sleeping through classes. When you get a pillow, pound your palm into it at two
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different speeds. One speed should be drastically slower than the other. Use the
whole thickness of the pillow to stop your hand in. You should be able to feel the
difference in time needed to bring your hand to a stop at the two speeds. At the

faster speed it will take much less time to stop.

Finally, notice that the slopes are negative. This means that the momentums
are decreasing. Physiologically, it is the absolute value of the rate of change of
momentum that is important. Mathematically, the rate of change of momentum of jump-
er #1 was much less than that of jumper #2. However, the impact was much greater
for #1. It is the absolute value of the rate, not its direction, that is important.
In other words, the steeper the slope the more abrupt is the change in momentum and

it is the abruptness that determines how damaging an impact is going to be.

12-3 sample Rate of Change of Momentum Calculations

The first thing to do is to calculate the average rate of change of momentum
for both jumpers. The unfortunate jumper #1 had an initial momentum of 4800 kg-m

per second and a final momentum of 0, eight-hundredths of a second later; there-
fore,
,Apl - ,4800 kg:m ggr sec - Ol
. sec
,48 x 102 kg-m per secl
-8 x 10 sec
4 k -m,

secC

sxlo‘”ig'—’;

|-6 x 10
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Jumper #2 had an initial momentum of 720 %%5? and a final momentum of 0, five-

tenths of a second later; therefore,

IAE - l720 kg-m per sec - 0,
At 0 - .5 sec

l7.2 X 102 kg-m per secl
-5 x 10™% gec

]

|-1.44 x 10% ko
secC

1.44 x 103 kg-m
’ sec

You have no doubt noticed by now that the units of rate of change of momentum
are much more complicated and unintuitive than any we have seen before.

Try not to think too much about what they mean, but use them as a check for
your work. For example, if you have completed your calculations and the units are
not (mass)- (length) per (time)2 then you have made an error.

Finally, you should be able to use dimensional algebra to transform the units
of momentum. For example, in Questions 1 and 2 we used kg for mass and kph for
velocity. You should be able to convert (kg~kiloumeters per hour) to (kg-meters per
sec) or make any similar unit conversion.

Problem Set 12 is entitled "A Crash Course in Momentum." Several accidents
are investigated in it. These accidents are based on reports of actual accidents,
compiled by the U.S. Department of Transportation. The names have been changed to

protect the victims.
PROBLEM SET 12--A CRASH COURSE IN MOMENTUM:

For Problems 1 through 4 use dimensional algebra to perform the indicated unit

conversions. (Lm = 3,28 ft)
km m kg-m kg-m
1. 100 B—r' to g;c—:' 3. 500 hT to Sec
mi m . 6 kg-mi kg-m
2. 60 it to Sec 4. 1.38 x 10 Fr to sec

5. Elmira smith (age 34) was driving home one night (1:40 a.m.) in her compact car.
She'd been at the local tavern lifting a few. She wasn't a lush, mind you. oOh,

no. She thought of herself asg a moderate, practical person. She wasn't a person
who drank herself blind. Three drinks and she was through. and a prudent driver,
too! She always fastened her seat belt, although not too tightly--sure didn't want
to wrinkle her dress. fowever, it was late and she was tired and the booze really
didn't help her stay alert. Furthermore, it was raining. Those oncoming headlights
were really bright. The wet pavement seemed to be making the glare more intense.
Yoicks! That guy left his brights on. While she was momentarily blinded she didn't
see the curve to the left. She went off the road and hit a small tree. She was
going about 15 m/sec (about 34 mph) when she hit the tree. The car came to a stop

in .21 sec. Elmira's mass was 75 kg.
} oo
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a. Calculate Elmira's momentum just before impact.
b. Calculate her absolute average rate of change of momentum over the entire

time interval. (l%%l)

Elmira survived the crash with only relatiQely minor injuries. She complained
of chest pains. Presumably these were caused by her impact with the steering wheel.
One factor which prevented more serious injury was the size of At. As you work
through this problem set you will discover that .21 second is a long time for a ve-
hicular impact. The reason Elmira's contact was longer was that the tree was small.
The small-diameter tree penetrated farther into the car, giving it a longer distance
in which to stop which resulted in a longer stopping time. The moral to this story
is, "If you have to hit a tree, hit a little one."

6. Felix Bugdriver (25) was driving home from the local tavern. It was 3:00 a.m.
He'd had a beer or two and he was sleepy--oh, so sleepy. It occurred to him that
he shouldn't be driving when he was fighting off the z's. But he wasn't alarmed.
He was too content and fatigued to be alarmed. Snore. Crash. Whoops. Those 70-
cm diameter trees don't give like the pillows he should have hit. The collision
changed the speed of Felix's 90-kg mass (about 198 1b) from 16 m/sec to zero m/secC
in 14 csec. (A csec is one-hun<.-:dth of a second.) )

a. Calculate Felix's momerrw. in (kg-m) per (sec).

b. Calculate Felix's absolu.: average rate of change of momentum in (kg-m) per
(sec-csec) .

c. Convert your answer to Part b into units of (kg-m) per (secz).

Felix survived the crash with serious injuries. He broke several bones in his
chest and legs and he had a concussion. He wasn't wearing a seat belt. One factor
which made Felix's injuries more serious than Elmira's was the diameter of the tree.
Felix's was bigger than Elmira's. It stopped him in a shorter distance and hence

a shorter length of time.

7. Busby Berzerkly and his drinking buddy Stewart Pid were driving home from the
bar. Now Busby was one of those people who regularly drank himself blind. Acquain-
tances described him as "almost crazy."” He had had several driving violations and
been prohibited from driving or owning an automobile. This didn't stop mad Busby.
He conned his landlady intec registering his automobile and continued his bad booz—
ing ways.

On this particular night it was really foggy. Not outside, but inside. In-
side Busby's head, that is. A blood-alcohol concentration of .27% will fog up just
about anybody's brain. Busby was no exception. Stew Pid had also been drinking,
but his blood-alcohol level was only .07%, not even legally drunk (in most states
legal drunkeness begins at .10%). So he couldn't blame the fact that he was riding

with a madman on booze-blurred judgment.
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a. Calculate Elmira's momentum just before impact.
b. Calculate her absolute average rate of change of momentum over the entire

time interval. (l%%l)

Elmira survived the crash with only relatiQely minor injuries. She complained
of chest pains. Presumably these were caused by her impact with the steering wheel.
One factor which prevented more serious injury was the size of At. As you work
through this problem set you will discover that .21 second is a long time for a ve-
hicular impact. The reason Elmira's contact was longer was that the tree was small.
The small-diameter tree penetrated farther into the car, giving it a longer distance
in which to stop which resulted in a longer stopping time. The moral to this story
is, "If you have to hit a tree, hit a little one."

6. Felix Bugdriver (25) was driving home from the local tavern. It was 3:00 a.m.
He'd had a beer or two and he was sleepy--oh, so sleepy. It occurred to him that
he shouldn't be driving when he was fighting off the z's. But he wasn't alarmed.
He was too content and fatigued to be alarmed. Snore. Crash. Whoops. Those 70-
cm diameter trees don't give like the pillows he should have hit. The collision
changed the speed of Felix's 90-kg mass (about 198 1b) from 16 m/sec to zero m/secC
in 14 csec. (A csec is one-hun<.-:dth of a second.) )

a. Calculate Felix's momerrw. in (kg-m) per (sec).

b. Calculate Felix's absolu.: average rate of change of momentum in (kg-m) per
(sec-csec) .

c. Convert your answer to Part b into units of (kg-m) per (secz).

Felix survived the crash with serious injuries. He broke several bones in his
chest and legs and he had a concussion. He wasn't wearing a seat belt. One factor
which made Felix's injuries more serious than Elmira's was the diameter of the tree.
Felix's was bigger than Elmira's. It stopped him in a shorter distance and hence

a shorter length of time.

7. Busby Berzerkly and his drinking buddy Stewart Pid were driving home from the
bar. Now Busby was one of those people who regularly drank himself blind. Acquain-
tances described him as "almost crazy."” He had had several driving violations and
been prohibited from driving or owning an automobile. This didn't stop mad Busby.
He conned his landlady intec registering his automobile and continued his bad booz—
ing ways.

On this particular night it was really foggy. Not outside, but inside. In-
side Busby's head, that is. A blood-alcohol concentration of .27% will fog up just
about anybody's brain. Busby was no exception. Stew Pid had also been drinking,
but his blood-alcohol level was only .07%, not even legally drunk (in most states
legal drunkeness begins at .10%). So he couldn't blame the fact that he was riding

with a madman on booze-blurred judgment.
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Authorities were able to determine from the length of skid marks, etc., that
the speed of impact was about 15 m/sec (about 34 mph)., The masses of the brothers
Grease are listed in the following table.

mass weight Speed

m

Axel 72 kg 159 1b 15 sec
m

Elbo 75 kg 165 1b 15 Sec
m

Easy 64 kg 141 1b 15 sec

The impact was over in 8 csec.

a. Calculate the initial momentum for each passenger.

b. Calculate the absolute average rate of change of momentum for each passen-
kg-m

er in .
g sec-csec

c. Convert your answers to Part b to X3~
sec

9. Rick and Whit Less were brothers. They liked to have fun together. Their idea
of fun was to score a couple of six-packs of malt liquor, drive up on top of the
hill just outside of town, chug the booze and drive back into town. This was fun
because it was exciting. It was exciting because it was illegal. It was illegal
because it was dangerous. Read on, see how dangerous. Both Rick and Whit were un-
der the legal drinking age. However Rick was old enough to drive. Therefore they
were able to drive outside of town where they wouldn't get caught while they were
putting away the juice.

One Friday night after a football game, Rick and Whit decided to have some fun.
They took Ophelia Beese with them. On the way back down the hill the bald right
front tire blew out. Rick over-corrected to the left. Unfortunately he collided
with a bridge abutment. Both Whit Less and O. Beese died more or less instantly.

Rick Less walked away.

From the length of the skid marks and the depth of penetration of the bridge
abutment into the wrecked car, the police were able to estimate that the car had
been going about 25 m/sec (56 mph) and that the impact had lasted about 12.5 scec.
The masses and ages of the occupants are given in the following table.

mass age
Rick Less 60 kg 19
0. Beese 96 kg 34
Whit Less 64 kg 16

a. Calculate the initial momentum for each passenger.
b. Calculate the absolute average rate of change of momentum for each passen-

ger in units of (kg-m) per (sec-csec).
c. Convert your answers to Part b to units of (kg-m) per (secz).
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SECTION 13: INSTANTANEOUS RATES OF CHANGE OF MOMENTUM

In the previous section we learned that the rate of change of momentum is an
importont factor in collisions. You may already know or have guessed that the rate
of change of momentum is actually force. You can perform a simple experiment to
convince yourself of this fact. Clap your hands first gently and then hard. When
you clap your hands hard, the impact of your two hands when they collide is much
more strongly felt than when they are clapped gently. You should be able to sense
the greater force of impact when they ar. clapped hard. From a physical point of
view, this is equivalent to saying that _he rate of change of momentum is greater

when the hands are clapped hard.

There is a parallel between the hand clapping example and the parachute example
of the previous section. The average rate of change of momentum is %%. Ap is
larger for a hard hand clap because the hands are moving faster. At will tend to
be shorter for th¢ hard hand clap again because the hands are moving faster. Both
of these effects will tend to make the ratio %% greater for the hard hand clap than
for the gentle one. vYou feel this greater rate of change of momentum as a momentary
force. When we calculate an average rate of change of momentum we are calculating
the average force exerted on the object during the time interval that is used in

the calculation.

All of this so far is important to know, but it isn't quite enough. It is
possible for all passengers in an automobile to experience approximately equal av-
erage rates of change in momentum. In other words Ap will be about the same and
At will be the time it takes for the car to stop; therefore the %% ratios for the
pPassengers will be about equal. We will see that the differing instantaneous rates
are a major influence in causing different passengers to sustain injuries of widely
differing seriousness. Scat belts, shoulder harnesses, air bags, padded dashes, and
steering wheels are things that influence the pattern of instantaneous forces that

occur during the course of an automobile collji:ion.

AN ILLUSTRATIVE EXAMPLE:

The graph on the following page shows time vs. momentum for two different
parachute landings. The time scale of the graph starts at the instant of contact
with the ground. In other words, t = 0 refers to the instant of contact with the
ground, and t = .5 refers to the instant of complete rest. One parachute landing
was performed by a competent person by the name of Ima Goodwin. The other one was
performed by ilmo.

To demonstrate that there can pe large differences between average rates and
instantaneous rates, we first compute the average rates over the interval from the
instant of contact to the instant of complete rest. The average rates of change

of momentum for Ima and Elmo are very close to one another.

Ima: %g = Z%g = 1400 Kg-m
° sec
Elmo: 2L - Z%g = 1440 X9
iy sec
64 6
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However, Elmo suffered a broken arm, while Ima was not hurt. An examination
of the graph will explain why Elmo suffered and Ms. Goodwin escaped unharmed. A
portion of Elmo's graph looks steeper than Ms. Goodwin's. As we discussed previ-
ously, a steeper slope indicates a higher absolute rate of change of momentum, or
in other words a greater force. We can see rhism merely by looking at the graph,
but we cannot examine the instantaneous rate: b looking at the graph. We will have

to use skills associated with taking derivatives.

Recall that we must first have an equation before we can differentiate. The

equations needed are given below.

Elmo's equation for t between .1 and .3 sec:

3 2

p = 175,000t - 105,000t + 15,750t + 10

Ms. Goodwin's equation for t between 0 and .5 sec:

3

p = 4,000t - 1,200t2 - 1,800t + 700

7() 65
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Since Elmo broke his arm, his situation would seem to be more interesting than
Ima's. However, the numbers in Ima's equation will be easier to handle. Therefore,

we will consider Ima's fate first and Elmo's fate later.
Now that we have selected an equation, the next step is to differentiate it.

4,000t3 - 1,200t2 - 1,800t + 700

P
gE 3(4,000)t% - 2(1,200)t - 1,800
t r r r

12,000t2 - 2,400t - 1,800

This equation will tell us the instantaneous rate for any t. It is easy to -calcu-
late the rate for t = 0. All terms containing t disappear and we are left with

92:— =
& = -1,800 at t = 0.

Remember that Ima's average rate was -1400. The implication is that Ima ex-
perienced greater force at the moment of contact with the ground than the average

force she experienced over the entire interval from 0 sec to .5 sec.

In order to illustrate a more general calculation, we will show how to calcu-

da -
late 3% for t = .3.
EXAMPLE:
Calculate g% for t = .3.

SOLUTION:

g@ = 12,000t% - 2,400t - 1,800
= 12,000(.3)% - 2,400(.3) - 1,800
= 12,000(.09) - 720 - 1,800
= 1,080 - 2,520
= -1,440

Now we take up the case of Elmo. His momentum (p) for any t between .l sec

and .3 sec is given by the equation
p = 175,000t> - 105,000t% + 15,750t + 10

The force at any time t will be given by g%.

g% (3)175,000t2 - (2)105,000t + 15,750
2

525,000t" - 210,000t + 15,750

Now look back at the graph of p as a function of t. Notice that the graph looks
very steep near t = .2 sec. By. substituting t = .2 sec into the equation for g%

we can determine the instantanecus force at this instant.




525,000(.2)2 - 210,000(.2) + 15,750

2ys
Il

= 525,000(.04) - 210,000(.2) + 15,750
= 21,000 -~ 42,000 + 15,750

= -21,000 + 15,750

= =5250

Again we compare this figure to the average raze of -1440, and we can see that
Elmo experienced over 3% times the force at this particular instant than the aver-
age force he experienced over the entire interval.

Now its time to sum up what we've done here. By looking at the graph we can
see that Elmo dissipated most of his momentum in a very short time interval. On

the other hand, Ms. Goodwin spread her loss of momentum more evenly over the time
interval. Elmo's pattern resulted in a tendency to experience higher instantaneous

forces than Ms. Goodwin.

At this point one question is begging to be answered: What were the maximum
forces experienced by the two jumpers? This topic will be taken up in the next

section.

PROBLEM SET 13:
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The vertical axis is scaled in the momentum units (kg-m) per (sec). The hori-
zontal axis is scaled in units of csec.
a. How much stopping time did Elmira lose because she didn't have her seat

belt tightly fastened? Remember that without units your answer 1is meaningless.
b. Differentiate the momentum equation to get an equation for the instanta-

neous force at time t. (P = §t3 - 27t2 + 252t + 441)

c. Calculate the absolute instantaneous force at time t = 10 csec (in units
of seg—gﬁec)'
2. Felix Bugdriver's impact was very similar to Elmira's. However, it only took

him 2 csec to hit the steering wheel after his car hit his tree. There are two
reasons why Felix's time was shorter than Elmira's. First, he was in a smaller car;
consequently, he was closer to the steering wheel to start with. Second, the im-
pact didn't last as long, which made everything happen proportionately faster. The
two equations below describe Felix's momentum during the impact.

Domain
(t in csec)

1440

£3 - 20t - 28t + 1568

0 <t < 2

T
L]

2 <t

|A

14 p

a. Differentiate p 1440.
b. What was the instantaneous force on Felix at t = 1 csec?
c. Differentiate p = t3 - 20t2 - 28t + 1568 with respect to t.

d. Calculate the absolute instantaneous force on Felix at t = 5 csec.

3. Now we consider the case of Busby Berzerkly and Stewart Pid. Recall that Mr.
Pid was a passenger in the right front seat. Some have called this particular po-
sition the "suicide seat." This title is easily justifiable. From a statistical
point of view, it has been found in studies of thousands of accidents that the pas-
senger in the right front seat has a much higher risk of serious injury or death
than the driver. To try to understand why this is so, we will look at the situation
in terms of the rate of change of momentum. Right front passengers generally col-
lide with the dashboard. Since the dashboard is a little farther away from the seat
than the steering wheel, it takes a little longer to get to it; therefore, the ef-
fective stopping time is less for the right front passenger than for the driver.

The graph on the following page shows this situation.

Notice that even though Busby had more momentum to start with, the slope of
Stew's graph near t = 7 csec is much steeper than Busby's is anywhere. The graphs

are described by the following sets of equations.
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Domain
(t in csec)
0<t=<3 p = 2135
Busby: < 3 < t < 17 p=t> - 27¢2 + 41t + 2228
17 < t < 20.5 p = -10t + 205
0<ts<7 p - 1830
7 < t=< 9 p = -364t + 4378
Stewart: : 3 2
9 < t <17 p=t" - 27t° + 45t + 2155
_ =60 5

a. How much more effective stopping time did Busby have than Stew?
b. Find —E for each equation.

c. Calculate Busby's absolute instantaneous force at t = 10 csec (in units of
kg-m ). '
sec-csec
o “dv " Calculate Stewart's instantaneous force at t = 8 csec (in units of
kg-m
sec~csec)'
e. Look at the graph. Determine the interval where Busby's graph is steepest.

4. Now we take up the Less brothers, Rick and Whit. Remember that they had an un-
fortunate run-in with a rather solid bridge abutment. On the following page there
is a graph of momentum vs. time for each passenger. Pecall that Rick walked away

while Whit and Ophelia Bees~ were killed rather quickly. The new factor in this
69
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accident is the fate of the right rear passenger.

~

You might think that he would

have a good chance to survive because he hit the back of the front seat, a much

more
car.
Rick

quently his stopping time was drastically reduced.

flexible object than a dashboard.

Very spacious.

had roughly twice the distance to travel before he hit a restraint.

However,

the car was a large size American

This may be an advantage sometimes, but not in an accident.

Conse-

The following equations describe

the relation between time and momentum for each passenger.

tion

5.

relate time to momentum for each passenger.

6.

brothers is in some ways a freak.
stantly while the passenger in the suicide seat, Elbo, survived.

happen?

Domain
(t in csec)
. 0 <t <2 p = 1500
Rick: 2 <t<12  p=3t3 - 63c2 + 216t + 1296
0 < <5 p = 2400
0. Beese: ) 5 < t < p = 450t> - 6750t2 + 32,100t - 45,600
6 <t<12 p=2%7 - 50e? + 2400
0 <t=<8 p = 1600
Whit: U8 <t <12 p = 2063 - 55062 + 4320t = 8640
a. Calculate the instantaneous force on Rick at t = 5 csec.
b. Calculate the instantaneous force on Ophelia at t = 5 csec, using the equa-
for 5 < t < 6.
C. Calculate the instantaneous force on Whit at t = 10 csec.
Finally, we consider the case of the brothers Grease. The following equations

Domain
(t in csec)

0 <t < p
Axel: 1.5 <t < p
(driver) <t < 2. B
5 <t < P
Elbo: 0 <t < p

(right
front) 3t p
Easy: < <1 P

(center

rear) 1= hl p
a. Calculate the instantaneous force
b. Calculate the instantaneous force
c. Calculate the instantaneous force

You should recognize that the result of the accident involving

= 1080
= 6t - 69t + 22.5¢ + 1181.25
= 998.25
= 6t3 - 68t2 + 96 + 1152
= 5t3 - 5t2 - 105t + 225
= at3 - 40t? - 128t + 1536
= 960
3 2
= 3t - 42t° + 27t + 972
expecrienced by Axel at t = 4 csec.
experienced by Elbo at t = csec.
experienced by Easy at t = csec.
the Grease

For example, the driver, Axel, was killed in-

low could this

Here are a few more details that we will give to you in the nature of clues.
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*A broken beer bottle was smashed between Axel and the hub of the steering
column.

*The only contact point that was detectable for Axel was the hub of the steer-
ing column.

-The death certificate indicated that Axel died of massive head injuries.

-Elbo had a broken hand.

-The automobile was going slow enough before the impact that the passengers

had time to react.

Speculate on how the forces of impact and the pressures (force divided by area

of contact) that the forces caused could be used to explain what happened.

SECTION 14: MAXIMUM FORCE

14-1 Maximum Force

In this section we are going to see how the differentiation procedure may be
applied twice to squeeze a little more information out of the relationship between
momentum and time. In other words, we will be differentiating the resulting equa-
tions. Before we jump into this though, we'll go through a brief review of what

has happened thus far.

We started out this physics-related sequence by taking up the idea of momentum
and rates of change of momentum. Next we made the connection between the instanta-
neous rate of change of momentum and instantaneous force. The equation belcw states
the equality of these two physical quantities.

dp
dt
With this in mind, we examined the patterns of instantaneous force that occurred

= F

during impacts. Finally, we raised the question of how we might determine the max-
imum force experienced during an impact. This is an important problem. For ex-
ample, suppose two impacts were similar in all features except one. The one dif-
ference was that in one impact there was a higher maximum instantanecus force. It
seems reasonable that the impact with the higher maximum instantaneous force would

be more likely to produce an injury.

How shall we go about determining the maximum instantaneous force? We shall
apply the maxima-minima technique to the force equation. In the previous section
we examined the change in momentum which occurred in two parachute landings. Here
we will demonstrate how to find the maximum force experienced by Ms. Goodwin. Her

momentum was related to time by the equation

p = 4,000t3 - l,200t2 - 1800t + 700

The derivative of p with respect to t is the force at time t.
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12,000t2 ~ 2,400t - 1,800

oo
1

12,000t2 ~ 2,4000t - 1,800

You should recognize that this last equation is a simple quadratic. The fol-

lowing is a graph of this equation over the interval 0 < t < .5 seconds.

TIME (5EC)
2 >

e e ol LR Ry

3 i et & RORE

{

Sasd SARES
. g7
: F /
- i b v
1200 AT . -
-’ i i . n - -
2000 ferr bt o e | S e N Tiid
L P e G
T NSNS N RSy SESEd ) o W

This is a graph of the instantaneous force experienced by Ima during her impact
with the ground. We can easily see that there is a minimum associated with t = .1
sec. An inspection of the graph will reveal that the force at this instant was
~1920. Since we won't always want to take the time to graph the force equation we
will outline the analytic procedure. We will treat the force equation just as we

would any other equation and apply the max-min procedure to it.

First we take the derivative.
F = 12,000t% - 2,400t - 1,800

F
%E 2(12,000)t = 2,400

24,000t - 2,400

The second step is to set the derivative equal to zero and soive for t.

0 = 24,000t - 2,400
2400 = 24,000t
2400 _
24,000

1=t
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We see that Ms. Goodwin experienced the maximum force at the instant t = .1
sec. All that remains is to substitule t = .1 back into the force'equation. This
will tell us what the force was at the instant t = .l'sec.

2

F = 12,000t% - 2,400t - 1,800
= 12,000(.1)% - 2,400(.1) - 1,800
= 12,000(.01) - 2,400(.1) - 1,800

= 120 - 240 - 1,800
= -1920 X902
sec
Note that this value is exactly the same as the graphical solution and the al-
gebraic approach saved us much time and effort. You can partially check this by
referring back to Section 13. You will see that the absolute value of this force
(i.e., 1920 kg—m/secz) exceeds the two absolute forces calculated in that section.

14-2 A Summarized Maximum Force Procedure

Since there are several steps in the procedure of determining the maximum ab-

solute force during an impact, we have developed a step-~-by-step procedure.

l. Differentiate the momentum equation with respect to t.

EXAMPLE: p = 3t3 - 2t2 + t + 4

dp 2 _
e =9t 4t + 1

2. Call this equation the force equation.

EXAMPLE: F = 9t2 - 4t + 1

3. Differentiéfé‘fheuféfée7equation with respect to time.
4aFr

EXAMPLE: 3t = 18t - 4
4. Equate to zero and solve for t.
EXAMPLE: 0 = 18t - 4
4 = 18t
4 _
18 = t
2 _
=t

5. Substitute this value of t back into the force equation. This gives the

force at the instant of maximum absolute force.
2

EXAMPLE: F = 9t -4t + 1
= 9(2)2 _ 42
= 9(3) 45 + 1
4 8
=93 -5+ 3
9
_4 8,9
=3 ~-3%3g
= 2
-9
P~
9
74 e
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PROBLEM SET 14:

1.

for

the

was

2.

Elmira's momentum as a function of time is described by the equation
p = §t3 - 27t% + 252t + 441
any t such that 6 csec < t < 21 csec.

a. Show steps which confirm that the instantaneous force at any time t within
given domain is given by the equation

F = 2¢% - 54t + 252

b. Fina IE.
c. Equate g% = - and solve for t. This tells you the instant that the force

a minimum (or maximum absolute value).
d. Substitute your answer to Part c into the force equation of Part a.

e. What is this force (answer to d) called?

Follow the procedure exactly as outlined in Problem 1 to find the maximum ab-

solute force experienced by Felix Bugdriver in the interval 2 csec < t < 14 csec.

3.

4.

3 2

p=t> - 20t - 28t + 1568

The equations which describe Busby's accident are given below.

Busby: Domain (t in csec)
<t <3 p = 2135
3 <t <17 p =t - 27¢% + 41t + 2228
17 < t < 20.5 p = =10t + 205
Stewart:
<t < p = 1830
<t < p = -364t + 4378
9 <t <17 p = 3 - 27t2 + 45t + 2155
17 < t < 20.5 p =20 + 175 3

Determine the maximum force experienced by each passenger.

The equations for Rick Less, O. Beese and Whit Less are listed below.

Rick: Domain (t in csec)
0<t<2 p = 1500
<t <12 p = 3t3 - 63t2 + 216t + 1296
Ophelia: 0 = < p = 2400
5<t< p = 450t3 - 67502 + 32,100t - 45600
<t <12 p = 2t - 50e? + 2400
Whit: 0 <t <8 p = 1600
8 <t < 12 p = 20t3 - s40t? + 4320t - ge4o0

a. Determine the maximum force experienced by Rick Less.
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b. Determine the time when Ophelia experienced the maximum force. To find
the force at that time, you may either substitute the appropriate t into the force
equation or estimate the slope of the momentum curve from the graph in Problem Set

15.
C. Determine the maximum force experienced by Whit Less.

5. The equations for the brothers Grease are listed below.

Axel: <t - 1.5 p = 1080
(driver) 1.5 <t < 2.0 p = 6t - 69t2 + 22.5t + 1181.25
2.0 < t < 2.5 p = 998.25
2.5 < t < 8 p=6t3 - 782 + 96t + 1152
Elbo: <t <3 p = 5t - 5¢2 - 105t + 225
(right front) 3 <tz<s8 p = at3 - 40t? - 128t + 1436
Easy: < <1 p = 960
(center rear) 1< <9 p = 3t3 - 42t2 + 27 972

a. Determine the time t when the force on Axel was the greatest. Then calcu-
late the force for the nearest whole csec.

b. Calculate the maximum force on Elbo. The instants of maximum force will
both be fractions. You may use the nearest whole number values of t in your calcu-
lations.

c. Determine the greatest force exerted on Easy. Again, you may use the near-

est integral value of t in the calculations.

6. a. Make an ordered list of the people involved and their maximum forces.
Start with the lowest and go to the highest. For example,

112.5 Elmira Smith

161% Felix

etc.
b. Divide the list into three parts. Label the parts
"Probably Survive"
"Possibly Die--Serious Injury"
"Probably Die"

REVIEW PROBLEM SET 15:

l. Differentiate_the following functions with respect to t.

3
a. y=¢t - % + <t

i

120
c. y = t2 + 22t4 - %é;
a. y = .3t¢00 %tso + %§t7
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2. Find the values of t which give maximum or minimum y-values for the following
functions. Substitute these t-values back into the functions to find the maximum

or minimum y-values.

a. y= %tz + %tz -2t + 1 d. y = %tz - 3t - %
b. y =t -3t -1 e. y=3t? + 4t + 10
c. y = t4 - %t3 - 4t2 + 3

3. Norbert's niece Hermionie has read about Galileo's famous experiment of dropping
various objects off the Leaning Tower of Pisa. Hermionie decided to repeat this
experiment, so she took various objects which were lying about the house, brought

them up to the attic and chucked them out the window.

a. Her father's granite paper weight had a mass of 2 kg. When it struck the
ground, it was traveling at 5 m/sec. What was its momentum? '

b. When the paper weight struck the petunia bed, it buried itself halfway into
the ground, coming to a complete stop in 1 dsec (.1 sec). What was the absolute
value of the average force on the paper weight during its collision with the ground?

C. The momentum equation for the paper weight's impact with the.petunia bed is

p=10t> - 12t2 - 6t + 8, t in dsec

where 10 dsec = 1 sec. What is the force equation for the paper weight?
d. At what time, t, is the absolute instantaneous force at a maximum?

€. What is the maximum absolute force? Expresé in kg—m/secz.

4. The Ming vase from the hall table had a mass of 1.5 kg. When it struck the
ground, it was alsc traveling at 4 m/sec. What was the momentum?

5. Hermionie made a parachute out of part of an old bedspread and attached it to
the goldfish bowl before launching the fish. The goldfish bowl (fish, water and
all) had a mass of 8 kg. Because of the parachute, it was only traveling at 3 m/

sec when it hit the ground.

a. What was its momentum?
b. The goldfish bowl, wonder of wonders, didn't break. It buried itself in

the petunia bed next to the paper weight, coming to a stop in 1 dsec (.1 sec).

What was the absolute value of the average force during the impact? Express in
kg-m

sec
€. The following momentum equation describes the goldfish bowl's arrival among

the petunias. t is in dsec (10 dsec = 1 sec).
p = 48t3 - 72¢% + 24
What is the force equation for the goldfish bowl?

d. At what time is the absolute instantaneous force at a maximum?
kg-m
7

e. What is the maximum absolute force? Express in
sec
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